Support Vector Machines: Methods and Applications (B-KUL-H02D3A)
Aims
After a brief introduction to the basics of statistical decision theory and pattern recognition this course focuses on methods of support vector machines for classification and regression. Support vector machine models make use of kernel functions (including e.g. linear, polynomial, radial basis function and spline kernels). In general it relates to several kernel based learning methods. The solutions typically follow from solving convex optimisation problems. Besides problems of supervised learning methods for unsupervised learning such as kernel principal component analysis are discussed as well. Support vector models are typically able to learn and generalise in very high dimensional input spaces. In this course the methods will be illustrated by examples and applications in datamining, bioinformatics, biomedicine, text-mining, finance and others.
Previous knowledge
Basic knowledge of linear algebra.
Identical courses
This course is identical to the following courses:
H02D3B : Support Vector Machines: Methods and Applications
Is included in these courses of study
- Master in de ingenieurswetenschappen: wiskundige ingenieurstechnieken (Leuven) 120 ects.
- Master of Artificial Intelligence (Leuven) (Specialisation: Big Data Analytics (BDA)) 60 ects.
- Master of Artificial Intelligence (Leuven) (Specialisation: Engineering and Computer Science (ECS)) 60 ects.
- Master of Bioinformatics (Leuven) 120 ects.
- Master in de bio-informatica (Leuven) 120 ects.
- Master of Statistics and Data Science (on campus) (Leuven) (European Master of Official Statistics (EMOS)) 120 ects.
- Master of Statistics and Data Science (on campus) (Leuven) (Statistics and Data Science for Biometrics) 120 ects.
- Master of Statistics and Data Science (on campus) (Leuven) (Statistics and Data Science for Business) 120 ects.
- Master of Statistics and Data Science (on campus) (Leuven) (Statistics and Data Science for Industry) 120 ects.
- Master of Statistics and Data Science (on campus) (Leuven) (Theoretical Statistics and Data Science) 120 ects.
- Master in de ingenieurswetenschappen: computerwetenschappen (Leuven) (Hoofdoptie Artificiële intelligentie) 120 ects.
- Master of Biomedical Engineering (Programme for students started before 2021-2022) (Leuven) 120 ects.
- Courses for Exchange Students Faculty of Engineering Science (Leuven)
- Master of Mathematical Engineering (Leuven) 120 ects.
- Master of Engineering: Computer Science (Leuven) (Option Artificial Intelligence) 120 ects.
- Master in de ingenieurswetenschappen: artificiële intelligentie (Leuven) 120 ects.
Activities
3 ects. Support Vector Machines: Methods and Applications: Lecture (B-KUL-H02D3a)
Content
- Introduction and motivation
- Basics of statistical decision theory and pattern recognition
- Basics of convex optimisation theory, Karush-Kuhn-Tucker conditions, primal and dual problems
- Maximal margin classifier, linear SVM classifiers, separable and non-separable case
- Kernel trick and Mercer theorem, nonlinear SVM classifiers, choice of the kernel function, special kernels suitable for textmining
- Applications: classification of microarray data in bioinformatics, classification problems in biomedicine
- VC theory and structural risk minimisation, generalisation error versus empirical risk, estimating the VC dimension of SVM classifiers, optimal tuning of SVMs
- SVMs for nonlinear function estimation
- Least squares support vector machines, issues of sparseness and robustness, Bayesian framework, probabilistic interpretations, automatic relevance determination and input selection, links with Gaussian processes and regularisation networks, function estimation in RKHS.
- Applications: time-series prediction, finance
- Kernel versions of classical pattern recognition algorithms, kernel Fisher discriminant analysis
- Kernel trick in unsupervised learning: kernel based clustering, SVM and kernel based density estimation, kernel principal component analysis, kernel canonical correlation analysis
- Applications: datamining, bioinformatics
- Methods for large scale data sets, approximation to the feature map (Nystrom method, Random Fourier features), estimation in the primal
- SVM extensions to recurrent models and control; Kernel spectral clustering; Deep learning and kernel machines; attention and transformers from a kernel machines perspective.
(10 lectures (2 hours) + 3 computer exercise sessions)
Course material
Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)
The course material is largely based on the textbook
J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, World Scientific, Singapore, 2002 (ISBN 981-238-151-1)
Related books:
Cristianini N., Shawe-Taylor J., An introduction to support vector machines, Cambridge University Press, 2000.
Schoelkopf B., Burges C., Smola A., Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1998.
Schoelkopf B., Smola A., Learning with Kernels, MIT Press, Cambridge, 2002
Vapnik V., Statistical learning theory, John Wiley, New-York, 1998.
Is also included in other courses
1 ects. Support Vector Machines: Methods and Applications: Exercises (B-KUL-H00H3a)
Format: more information
3 computer exercise sessions
Is also included in other courses
Evaluation
Evaluation: Support Vector Machines: Methods and Applications (B-KUL-H22D3a)
Explanation
Individually written report about the exercise sessions, with additional oral discussion.