Master of Mechanical Engineering (Leuven)

CQ Master of Mechanical Engineering (Leuven)

Opleiding

What can you find on this webpage?

Our (future) students can find the official study programme and other useful info here.

You can find information about admission requirements, further studies and more practical info such as ECTS sheets, or a weekly timetable of the current academic year.

Are you a future student?

Be sure to first take a look at the page about the Master of Mechanical Engineering.

There you can find more info on:

- What’s the programme about?

- Starting profile

- Admission and application

- Future possibilities

- Why KU Leuven

- Contact

- ...

Toelatingsvoorwaarden

Master of Mechanical Engineering (Leuven)onderwijsaanbod.kuleuven.be/2024/opleidingen/e/SC_52354240.htm#activetab=voorwaardenMaster of Mechanical Engineering (Programme for Engineering Technology Students) (Leuven)onderwijsaanbod.kuleuven.be/2024/opleidingen/e/SC_57551374.htm#activetab=voorwaarden

Doelstellingen

1.  Competent in one or more scientific disciplines

1)Graduates possess a general active (i.e. application-oriented) knowledge in mechanics. In addition to the mechanics package in the Bachelor of Engineering Science program, graduates are aware of the prevailing theories and have mastered the prevailing experimental and numerical techniques in the following domains: propulsion techniques, measurement and control techniques, structure mechanics.

2)Graduates possess a general active (i.e. application-oriented) knowledge in one of the following subjects. Depending on the chosen option, this is acquired in a broad domain of mechanical knowledge:
o  Manufacturing and management: operational management, production technology, product design and management.
o  Mechatronics and robotics: integration of mechanics, electronics and robotics, precision mechanics and robotic systems.
o  Thermo-technical sciences: physics of fluids, gasses, plasmas and neutrons for the development of thermo-technical devices and installations.
Or in an application-oriented domain of mechanical knowledge:
o  Aviation and space technology: application of all mechanical disciplines in aviation and space technology.
o  Vehicle technologies: application of all mechanical disciplines in vehicle technology.

3)Graduates are able to apply knowledge from various mechanical domains in a creative way, expand it, deepen it and integrate it in functional systems.


2.  Competent in research

4)Graduates are able to reformulate a complex mechanical engineering problem into specific research objectives, compose a research plan, define the different steps of the research process with the aim of advancing knowledge beyond the state of the art, including: critical analysis of the state of the art, problem formulation, creating a plan of action, execution and synthesis.

5)Graduates are able to execute a research plan and process, analyze and critically evaluate research results.


3.  Competent in design

6)Graduates are able to apply design methods of mechanics in real industrial situations based on theory, experiments and simulations, leading to an innovative or optimized functional product/process that meets multifunctional design requirements.

7)Graduates take the technological and economic conditions into account throughout the design process and are aware of the capabilities and limitations of the user and the social demand for sustainability.


4.  A scientific approach

8)Graduates possess a broad analytical, integrating, and problem-solving mind and are able to combine knowledge from mechanics and related domains.

9)Graduates can select and process the most suitable information sources (scientific literature, internet, workshops, conferences, experimental data, professional networks).

10)Graduates are able to evaluate, select and exploit advanced mathematical models, including the system/process model and boundary conditions with the appropriate level of complexity for the specific application.

11)Graduates have a proactive attitude and seek to constantly improve their professional skills.


5.  Intellectual basic skills

12)Graduates are able to judge whether experimental or model results are correct based on their scientific knowledge and numerical skills.

13)Graduates have a critical-constructive attitude with respect to new discoveries and developments encountered in the scientific literature and in their own research.

14)Graduates are aware of their own competences and the range in which they can operate independently.


6.  Skilled in collaboration and communication

15)Graduates are capable of effectively reporting research and project results to experts, peers and laymen, in Dutch and in a second language, both orally and in writing.

16)Graduates are able to cooperate and manage projects in a (multidisciplinary) team, including distributing and assuming responsibilities, observing time and resource constraints, and documenting project progress and results.

17)Graduates are able to work independently.


7.  Taking the temporal and social context into account

18)Graduates take the business-economic context into account.

19)Graduates are able to analyze the societal consequences (sustainability, environment, health, safety, ethics) of new developments in mechanics and integrate these in scientific work.

20)Graduates are aware of the standards and regulations concerning technology and the principles of the right to intellectual property.

All of the above learning outcomes are developed within a broad international context.

The graduated master:

  • During the practice of the engineering profession, is guided by his or her scientific and technical knowledge.
  • Has an engineering attitude that enables him or her to formulate solutions to complex problems, taking into account relevant constraints of an economic, legal, social, ... nature.
  • Is aware of his or her social and ethical responsibility and can act accordingly.
  • Has a willingness for open communication and cooperation, both with engineers within and outside the discipline, and with other actors in the professional field.
  • Has insight into the broader role that engineers play in society.
  • Shows willingness to keep abreast of new scientific and technical evolutions, and to approach them with a critical mind.

Educational quality of the study programme

Here you can find an overview of the results of the COBRA internal quality assurance method.

Educational quality at study programme level

Blueprint
Bestand PDF document Blueprint_MA_Mechanical Engineering.pdf

COBRA 2019-2023
Bestand PDF document COBRA-fiche_MA_werktuigkunde_2022-2023.pdf

Educational quality at university level

  • Consult the documents on educational quality available at university level.

More information?

SC Master of Mechanical Engineering (Leuven)

programma

This programme can be adapted according to the knowledge which the student has already acquired.

SC Master of Mechanical Engineering (Programme for Engineering Technology Students) (Leuven)

programma

Students follow the programme below in consideration with the programme director, aiming for a balanced curriculum which also connects with a previous degree.

This programme combines specific preparation courses with courses from existing Bachelor - and Master programmes. Therefore, there can not be guaranteed a conflict-free schedule.

Please note that the program contains 4 courses in the 'Basispakket wetenschappen' and 6 credits from the 'Bachelor Werktuigkunde' which are compulsory and are only given in Dutch.

printECTS33.xsl

ECTS Religie, zingeving en levensbeschouwing (B-KUL-A04D5A)

3 studiepunten Nederlands 20 Eerste semesterEerste semester

Doelstellingen

De student is in staat om


1. te verduidelijken welke rol levensbeschouwing en religies, in het bijzonder de christelijke geloofstraditie, spelen in cultuur en samenleving;
2. te analyseren welke mens- en wereldbeelden aanwezig zijn in fenomenen in samenleving en cultuur, zoals bijvoorbeeld media, gezondheidszorg, economie, techniek, onderwijs, … en hierover kritisch te kunnen reflecteren;
3. de eigenheid van levensbeschouwing(en) en religie(s), in het bijzonder van de christelijke geloofstraditie aan te tonen en uit te leggen aan de hand van concrete voorbeelden;
4. algemene theoretische visies uit theologie en religiewetenschappen toe te passen op actuele maatschappelijke thema’s;
5. de religieuze en levensbeschouwelijke thema’s verbonden met het eigen vakgebied leren onder ogen te zien en er kritisch mee om te gaan;
6. een persoonlijke en onderbouwde visie omtrent levensbeschouwelijke vragen en fenomenen te ontwikkelen en te verwoorden, in dialoog met het christelijke geloof;
7. in verband met aspecten van het eigen leven de waarde van religie, zingeving en geloofshoudingen te benoemen (‘levensbeschouwelijke bedachtzaamheid’);
8. levensbeschouwelijke  dimensies in het ontwikkelen van de eigen professionele identiteit te integreren. (zie https://www.kuleuven.be/onderwijs/visie-en-beleid/beleidsplan/Visie).

Begintermen

Dit college vergt geen specifieke voorkennis. Algemene kennis van de hoofdlijnen van de filosofie, de ethiek en de westerse cultuur en geschiedenis behoren wel tot de veronderstelde achtergrond van de cursus. Wat de motivatie betreft, wordt van de studenten niet verwacht dat zij gelovig zijn, wel dat zij bereid zijn op een open en kritisch-wetenschappelijke wijze te reflecteren over fundamentele ethische en zingevingsvragen vanuit verschillende levensbeschouwelijke invalshoeken, in het bijzonder, maar niet exclusief, de joodse en de christelijke invalshoek.

Identieke opleidingsonderdelen

A08C4A: Religie, zingeving en levensbeschouwing
H0N82A: Religions

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Religie, zingeving en levensbeschouwing (B-KUL-A04D5a)

3 studiepunten : College 20 Eerste semesterEerste semester

Inhoud

Vanuit moderne menswetenschappelijke inzichten en vanuit het eigentijdse theologische denken worden enkele thema's uit de actuele zingevingsproblematiek behandeld. De volgende vragen komen aan bod: waartoe dienen godsdiensten, wat vormt de kern van het christelijk geloof en hoe kan men dit situeren in het kader van de andere wereldreligies? Uitvoerig wordt ingegaan op de relatie enerzijds tussen christendom en cultuur, anderzijds tussen geloof en wetenschap en op enkele klassieke thema's die door de eeuwen heen de scharnierpunten van het christelijk geloof hebben gevormd: de bijdrage van het geloof tot het persoonlijk geluk, de christelijke toekomstverwachting, het debat over geloof en wetenschap en de vraag naar de specificiteit van de ethische inzet (normvervaging/normverschuiving). Ten slotte wordt aandacht besteed aan de relevantie van een levensbeschouwing m.b.t. tot ingenieursethiek.

Studiemateriaal

Studiekost: 11-25 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Het handboek is verkrijgbaar bij Acco (Hans Geybels & Ellen Van Stichel, Weerbarstig geloof (Leuven: Acco, 2018).

Toelichting werkvorm

Interactief college.

Evaluatieactiviteiten

Evaluatie: Religie, zingeving en levensbeschouwing (B-KUL-A24D5a)

Type : Examen tijdens de examenperiode
Vraagvormen : Meerkeuzevragen
Leermateriaal : Geen

Toelichting

Het examen is multiple choice en bevat voor 20 procent kennisvragen en voor 80 procent denkvragen. Er is geen GIScorrectie.

Toelichting bij herkansen

Inhaalexamens en herexamens bestaan uit drie open vragen.

ECTS Religie, zingeving en levensbeschouwing (B-KUL-A08C4A)

3 studiepunten Nederlands 20 Tweede semesterTweede semester
N. |  Beeckman Bryan (plaatsvervanger)

Doelstellingen

De student is in staat om


1. te verduidelijken welke rol levensbeschouwing en religies, in het bijzonder de christelijke geloofstraditie, spelen in cultuur en samenleving;
2. te analyseren welke mens- en wereldbeelden aanwezig zijn in fenomenen in samenleving en cultuur, zoals bijvoorbeeld media, gezondheidszorg, economie, techniek, onderwijs, … en hierover kritisch te kunnen reflecteren;
3. de eigenheid van levensbeschouwing(en) en religie(s), in het bijzonder van de christelijke geloofstraditie aan te tonen en uit te leggen aan de hand van concrete voorbeelden;
4. algemene theoretische visies uit theologie en religiewetenschappen toe te passen op actuele maatschappelijke thema’s;
5. de religieuze en levensbeschouwelijke thema’s verbonden met het eigen vakgebied leren onder ogen te zien en er kritisch mee om te gaan;
6. een persoonlijke en onderbouwde visie omtrent levensbeschouwelijke vragen en fenomenen te ontwikkelen en te verwoorden, in dialoog met het christelijke geloof;
7. in verband met aspecten van het eigen leven de waarde van religie, zingeving en geloofshoudingen te benoemen (‘levensbeschouwelijke bedachtzaamheid’);
8. levensbeschouwelijke  dimensies in het ontwikkelen van de eigen professionele identiteit te integreren. (zie https://www.kuleuven.be/onderwijs/visie-en-beleid/beleidsplan/Visie).

 

Begintermen

Dit college vergt geen specifieke voorkennis. Algemene kennis van de hoofdlijnen van de filosofie, de ethiek en de westerse cultuur en geschiedenis behoren wel tot de vooronderstelde achtergrond van de cursus. Wat de motivatie betreft, wordt van de studenten niet verwacht dat zij gelovig of ongelovig zijn, wel dat zij bereid zijn om op een open en kritisch-wetenschappelijke wijze te reflecteren op fundamentele ethische en zingevingsvragen vanuit verschillende levensbeschouweijke invalshoeken die de grondslag vormen van onze beschaving, in het bijzonder, maar niet exclusief, de joodse en christelijke invalshoek.

Identieke opleidingsonderdelen

H0N82A: Religions
A04D5A: Religie, zingeving en levensbeschouwing

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Religie, zingeving en levensbeschouwing (B-KUL-A08C4a)

3 studiepunten : College 20 Tweede semesterTweede semester
N. |  Beeckman Bryan (plaatsvervanger)

Inhoud

Vanuit moderne menswetenschappelijke inzichten en vanuit het eigentijdse theologische denken worden enkele thema's uit de actuele zingevingsproblematiek behandeld. De volgende vragen komen aan bod: waartoe dienen godsdiensten, wat vormt de kern van het christelijk geloof en hoe kan men dit situeren in het kader van de andere wereldreligies? Uitvoerig wordt ingegaan op de relatie tussen christendom en cultuur en op enkele klassieke thema's die door de eeuwen heen de scharnierpunten van het christelijk geloof hebben gevormd: de bijdrage van het geloof tot het persoonlijk geluk, de christelijke toekomstverwachting in confrontatie met humanistische objecties, het debat over geloof en wetenschap en de vraag naar de specificiteit van de ethische inzet (normvervaging/normverschuiving). Ten slotte wordt aandacht besteed aan de relevantie van een levensbeschouwing m.b.t. tot voorbeelden uit de ingenieursethiek.

Studiemateriaal

Studiekost: 26-50 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Het handboek is verkrijgbaar bij Acco (Hans Geybels & Ellen Van Stichel, Weerbarstig geloof (Leuven: Acco, 2018).

 

Toelichting werkvorm

Interactief hoorcollege.

Evaluatieactiviteiten

Evaluatie: Religie, zingeving en levensbeschouwing (B-KUL-A28C4a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Meerkeuzevragen
Leermateriaal : Geen

Toelichting

De eerste examenkans is multiple choice. Ongeveer 20 procent van de vragen peilt naar kennis; 80 procent zijn denkvragen.

Toelichting bij herkansen

Inhaalexamens en herexamens bestaan uit drie open vragen.

ECTS Environmental Economics (B-KUL-D0M36A)

3 ECTS English 26 First termFirst term

Aims

This is a course on economic approaches to environmental and resource problems. The course is designed to provide in-depth knowledge of the main approaches, theories, models, and techniques in environmental and resource economics and some of its applications in pollution and in transportation economics.

Results

By the end of the course, all students are expected to be able to:

  • demonstrate an understanding of key approaches and methods in environmental and resource economics
  • demonstrate an ability to analyse and apply taught models and techniques in environmental economics, pollution and transportation problems

Previous knowledge


At the beginning of this course students should have a basic knowledge of micro-economics (demand, supply, market equilibrium, imperfect competition) and quantitative techniques (algebraic treatment of micro-economics).  This knowledge is essential.
No prior knowledge of transportation science is required.  

Is included in these courses of study

Onderwijsleeractiviteiten

Environmental Economics (B-KUL-D0M36a)

3 ECTS : Lecture 26 First termFirst term

Content

  • Foundational environmental and resource economics
  • Environmental valuations
  • Cost and benefit analysis and discounting
  • Integrated Assessment Models for Climate Change
  • Government Responses to Pollution problems
  • International Environmental Agreements

Course material

Used Course Material: for DOM36A:

 

- Pre-lecture material: set book chapters, set papers and set videos

- Lecture notes

- Essential textbook reading:

 

  • R. Perman, Y. Ma, M. Common, D. Maddison, and J. Mcgilvray. Natural Resource and Environmental Economics. Pearson Education Limited, 2013.
  • C. Kolstad. Intermediate Environmental Economics. Oxford University Press, international 2nd edition, 2011.

Format: more information

D0M36A: Lectures

D0M36B: Lectures and small exercises and class activities

Is also included in other courses

D0M36B : Environmental Economics

Evaluatieactiviteiten

Evaluation: Environmental Economics (B-KUL-D2M36a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

 Features of the evaluation 

Students have to answer essay questions (closed-book written exam).

Determination of final grades

The grades are determined by the course holder(s) (titularis), as announced via Toledo and the examination schedule. The result is computed and expressed as a whole number on a scale of 20.

Information about retaking exams

Second examination opportunity
 
The features of the evaluation and the determination of final grades of the second examination opportunity are similar to those of the first examination opportunity.

ECTS Optimization: Special Topics (B-KUL-D0M90B)

6 ECTS English 39 Second termSecond term

Aims

Upon completion of this course, the student is able to:
* translate a given optimization question into a mathematical formulation
*make a balanced judgement of the different options and techniques of solving a given optimization problem
*understand, informally, the distinction between “easy”and “hard” problems, and use this understanding to assess the inherent difficulty of solving a given problem
*design an enumerative method for a particular integer programming formulation
*design an approximative method for a particular combinatorial optimization problem
 

 

Previous knowledge

At the beginning of this course, students should have sufficient knowledge of Linear Optimization and the basics of Operations Research.

Is included in these courses of study

Onderwijsleeractiviteiten

Optimization: Special Topics (B-KUL-D0M90a)

6 ECTS : Lecture 39 Second termSecond term

Content

This is an advanced course in optimization. We start with mathematical formulations of different (combinatorial) optimization problems, and discuss their pros and cons. We see some applications in different domains. More importantly, we will pay attention to different solution methods. In particular, techniques that will be explained are branch-and-bound, branch-and-cut, branch-and-price, Lagrangian relaxation and Benders decomposition. We informally discuss computational complexity. There might be some variation in the contents of the course depending upon the interests of the participants. 

Course material

-
 

Evaluatieactiviteiten

Evaluation: Optimization: Special Topics (B-KUL-D2M90b)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions

Explanation

Features of the evaluation

The evaluation consists of a final exam. The exam is a written, closed book exam with open questions.

Determination of final grades

* The grades are determined by the lecturer as communicated via Toledo and stated in the examination schedule. The result is calculated and communicated as a whole number on a scale of 20.
* The final exam accounts for 100 % of the final grade.

Second examination opportunity

* The features of the evaluation and determination of grades are the same as those of the first examination opportunity.

ECTS Simulation Theory and Applications (B-KUL-D0R19A)

6 ECTS English 39 First termFirst term Cannot be taken as part of an examination contract

Aims

Upon completion of this course, the student is able to:

  • Tackle complex business decision problems, for which analytical solutions are inappropriate or infeasible, using simulation in an appropriate and systematic way, adopting advanced mathematical and statistical concepts and methods.
  • Apply a methodological approach in translating a problem statement into a logical sequence of solution steps, including the development of a simulation model and the specification of an experimental setup, as well the application of an appropriate statistical analysis of the simulation results.
  • Interpret, explain and apply simulation results towards practical decision-making.
  • Critically reflect on the developed model and the analysis of simulation results, and rely on a solid quantitative and scientific foundation in the argumentation of decisions based on simulation results.

Previous knowledge

  • At the beginning of this course, the student should have sufficient knowledge of basic statistics and should have general computer skills.
  • Programming skills are not required but are helpful.

 

Is included in these courses of study

Onderwijsleeractiviteiten

Simulation Theory and Applications (B-KUL-D0R19a)

6 ECTS : Lecture 39 First termFirst term

Content

Chapter 1: Introduction: what is simulation

Chapter 2: Fundamental concepts and building blocks in simulation

Chapter 3: Simulation software: Arena

Chapter 4: Constructing simple models: modeling basic operations and inputs

Chapter 5: Modeling detailed operations

Chapter 6: Statistical output analysis, process analysis & optimization

Chapter 7: Constructing more complex models, steady-state statistical analysis of non-terminating simulations

Chapter 8: Modeling transfer of entities: transporters and conveyors

Chapter 9: Generating random variates & variance reduction techniques

Course material

Books:

  • D. Kelton, R. Sadowski & N. Swets, Simulation with Arena, 5th edition, McGraw Hill, International edition, 2010, 636 p., ISBN 978-007-126771-7 (Required)
  • A.M. Law & D. Kelton, Simulation Modelling and Analysis, 3rd Revised edition, McGraw Hill Higher Education, 2000, ISBN-13 ‏ : ‎ 978-0071165372 (Recommended)

Software

  • Rockwell Automation Technologies, Arena Version 12.00.00: Windows compatible software including extended Online Help function which can be downloaded from http://highered.mcgraw-hill.com/sites/0073376280/student_view0/arena_software_download.html

Toledo

  • Course material will be made available on Toledo: slides, reader, etc.

Format: more information


 

Evaluatieactiviteiten

Evaluation: Simulation Theory and Applications (B-KUL-D2R19a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project
Type of questions : Multiple choice, Closed questions, Open questions
Learning material : None

Explanation

Features of the evaluation

* Assignments can take place during the academic year. Assignments may have to be carried out in teams of multiple students. The deadline for submitting the assignments will be communicated via Toledo by the lecturer.
* The final exam takes place on-campus and may consist of multiple choice questions and/or open questions.

Determination of final grades

* The grades are determined by the lecturer as communicated via Toledo and stated in the examination schedule. The result is calculated and communicated as a number on a scale of 20.
* There is a correction for guessing on multiple choice questions, unless indicated otherwise.
* The final grade is a weighted score consisting of one or more assignments (maximum 40%), and the final examination (minimum 60%), as announced on Toledo. The assignments take place during the academic year. Peer review may apply for the assignments.

Second examination opportunity

* The features of the evaluation and/or the determination of grades may differ between the first and the second examination opportunity.
* Marks for assignments are counted again in the third exam period. Students can retake assignments upon request by e-mail to the lecturer by July 10 latest.

ECTS Technology Entrepreneurship and New Business Development (B-KUL-D0S18A)

6 ECTS English 54 Both termsBoth terms Cannot be taken as part of an examination contract

Aims

This course offers a bird's-eye view of the entrepreneurial process, exploring how technological opportunities are transformed into value-creating economic activities. It aims to enhance understanding of the how, where, when, who, and why behind entrepreneurial initiatives.

Upon completion of this course, the student is able to:

  • Explain and illustrate the unique qualities of the entrepreneurial process;
  • Understand the role that business planning may have on the entrepreneurial process;
  • Understand the significance and dangers of business plan writing;
  • Appreciate the different purposes and audiences for business plans;
  • Evaluate the attractiveness of product and service ideas;
  • Evaluate the feasibility of business models within high-tech industries;
  • Retrieve (sufficiently reliable) primary data as input to a business planning process;
  • Apprehend the essential components of effective business plans;
  • Develop and evaluate a sophisticated business plan for an identified or given opportunity situated within a high-tech industry;
  • Adequately present a business idea.

 

 

Previous knowledge

This course does not assume that you have taken prior classes on entrepreneurship or business administration. However, it would help if you have a rudimentary understanding of how organizations operate. Actually, students who have already taken management or business courses may come to realize that the entrepreneurial building of new business is quite distinct from more generic business management.

Is included in these courses of study

Onderwijsleeractiviteiten

Entrepreneurship: Models and Ingredients (B-KUL-D0O39a)

2 ECTS : Lecture 36 Both termsBoth terms

Content

This component is designed to immerse students in the theory of entrepreneurship and new venture creation and address the trepidations of students who may consider becoming entrepreneurs at some point in their career.

Topics Covered in this Course:

  • Entrepreneurship intro, idea generation;
  • Feasibility study, business plan guidelines;
  • Industry analysis, market analysis;
  • Industry segmentation, target market selection;
  • Marketing plan, business positioning;
  • Team development;
  • Operations, product development plan;
  • Getting funding, financial statements.

Course material

Used Course Material:

  • Barringer, B.R. & Ireland, R.D. (2012). Entrepreneurship: Successfully launching new ventures (4th edition). Harlow: Pearson Education Limited;
  • Barringer, B.R. (2008). Preparing effective business plans: An entrepreneurial approach. Upper Saddle River (NJ): Prentice Hall;
  • Jones-Evans, D. & Carter, S. (2012). Enterprise and small business: Principles, practice and policy (3rd edition). Harlow: Pearson Education Limited.

Recommended Reading:

Toledo:

  • Toledo is being used to share all necessary readings and lecture slides.

Language of instruction: more information

This course is taught in English. 

Format: more information

Students interactively acquire in-depth and advanced insights into the entrepreneurial process in a course that combines traditional lectures (Models and Ingredients) with a demanding field project (Development of a Business Plan).

Is also included in other courses

D0O37A : Entrepreneurship and New Business Development

Entrepreneurship: Development of a Business Plan for High Tech Industries (B-KUL-D0S18a)

4 ECTS : Assignment 18 Both termsBoth terms

Content

For this component, students participate in a group-based business plan writing exercise, accompanied by presentations on their group's progress.

Topics Covered in this Course:

  • Idea generation and feasibility study;
  • Industry analysis, market analysis;
  • Industry segmentation, target market selection;
  • Marketing plan, business positioning;
  • Team development;
  • Operations, product development plan;
  • Getting funding, financial statements.

 

Course material

Used Course Material:

  • Barringer, B.R. & Ireland, R.D. (2012). Entrepreneurship: Successfully launching new ventures (4th edition). Harlow: Pearson Education Limited;
  • Barringer, B.R. (2008). Preparing effective business plans: An entrepreneurial approach. Upper Saddle River (NJ): Prentice Hall;
  • Jones-Evans, D. & Carter, S. (2012). Enterprise and small business: Principles, practice and policy (3rd edition). Harlow: Pearson Education Limited.

Toledo:

  • Toledo is being used to share all necessary readings, lecture slides, presentation guidelines, submit work, etc.

Language of instruction: more information

This course is taught in English. All presentations are delivered in English. 

Format: more information

Presentation - Project work

This course provides you with a profound understanding of the role, analytics, and process of business plan writing. Following the lectures ("Models and Ingredients"), students will engage in a group-based business-planning project and accompanying presentations. You will learn how to rigorously prepare for starting up a new business. As part of a small (approximately 6 students) and diverse team, you will develop an operational business plan aimed at either the creation of a new venture (NVC-track) or the development of new business for an established small to medium-sized firm (NBD-track). In both tracks, projects should pertain to a technology-intensive industry. You will engage in all steps of the entrepreneurial decision-making process (e.g., idea generation, feasibility analysis, industry study, market analysis, marketing plan, production plan, product development, and financial statements). Participants are expected to accumulate entrepreneurial knowledge and behaviors that support creative solutions and new value development.

The business plan is the most demanding course component. It is in the business plan that you can show what you have learned from the course. It requires extensive field research, creativity, and critical thinking.

Evaluatieactiviteiten

Evaluation: Technology Entrepreneurship and New Business Development (B-KUL-D2S18a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project, Presentation, Self assessment/Peer assessment
Type of questions : Multiple choice
Learning material : None

Explanation

Features of the Evaluation:

  • A written exam assesses the extent to which the student has internalized the key insights from the course material that were studied to prepare for the lectures and that will be applied in the business plan. Questions will be in the format of single-answer, multiple-choice, with correction for guessing. Further details about the grading of the multiple-choice questions will be explained during the lectures and can be found on the Toledo page;
  • The course involves the full development of an operational business plan as well as multiple intermediate presentations throughout the year;
  • The business plan and presentations should reflect that you can adequately apply the different entrepreneurial concepts presented in class;
  • Upon completion of the business plan, students have to indicate the extent to which their team members (peers) have contributed to the final result of the manuscript and its presentations (= peer assessment);
  • For the business plan exercise, the terms of delivery and deadlines will be determined by the lecturer (titularis) and communicated via the Toledo page;
  • The date of the (final) business plan presentation(s) will be determined by the lecturer (titularis) and communicated via the Toledo page. The presentations will take place before the examination period.

Determination of the Final Grades:

  • The grades are determined by the lecturer (titularis) as communicated via the Toledo page and stated in the examination schedule. The final grade is calculated and communicated as an integer on a scale of 20;
  • The final grade is a weighted score and consists of the following components:
    • 30% on a written closed-book exam in the form of multiple-choice questions, organized in the January examination period (with correction for guessing);
    • 50% on the final business plan;
    • 20% on the business plan presentations.
  • Peer evaluation may trigger a correction up to 20% of the grade of the business plan;
  • If the set deadlines for the business plan exercise were not respected, the final grade will be “NA” (not taken) for the whole course;
  • If the student does not participate in the development of the business plan, the final grade will be “NA” (not taken) for the whole course;
  • If the student does not participate in the exam, the final grade will be “NA” (not taken) for the whole course;
  • Student attendance and participation in the business plan presentations are required for successful completion of the whole course.

Second Examination Opportunity:

  • At the second exam opportunity, the final grade is based on:
    • 30% on a written closed-book exam in the form of multiple-choice questions (with correction for guessing);
    • 50% on an individual assignment (for students who failed the business plan component);
    • 20% on the business plan presentations.
  • Students who passed the exam do not have to retake the exam. The grade obtained at the first exam opportunity will therefore be transferred to the second exam opportunity;
  • Students who have passed the business plan cannot retake that component. For them, the results already obtained at the first exam opportunity will be transferred to the second exam opportunity;
  • Students who failed the business plan, cannot retake the business plan exercise but are required to complete an individual, written assignment;
  • Due to the nature of the business plan presentations, this part of the evaluation cannot be retaken. The grade obtained at the first exam opportunity for this part will therefore be transferred to the second exam opportunity.

Information about retaking exams

See ‘Explanation’ for further information regarding the second examination opportunity.

ECTS Intellectual Property Management (B-KUL-G0B01A)

4 studiepunten Nederlands 26 Tweede semesterTweede semester

Doelstellingen

Bij het voltooien van dit opleidingsonderdeel is de student, ongeacht zijn specialisatie, in staat om:
• het belang van kennis- en technologiebescherming begrijpen voor bedrijven en onderzoeksinstellingen
• de basisregels van het intellectuele eigendomsrecht in het algemeen en het octrooirecht, het auteursrecht, het merkenrecht en het modellenrecht in het bijzonder te begrijpen
• inzicht te hebben in de wijze waarop bedrijven in de praktijk, bij het uittekenen van hun beleid inzake bescherming van nieuwe innovaties en creaties, gebruik maken van het systeem van de intellectuele rechten
• gebruik te maken van terminologieën die eigen zijn aan het domein van de intellectuele rechten en het management daarvan
• te begrijpen wat de voor- en nadelen zijn van het beschermen of geheimhouden van nieuwe kennis of technologieën en welke strategieën daarbij kunnen worden gehanteerd
• in staat zijn om – op basis van vooraf gegeven opgaven – een antwoord te formuleren op vragen die verband houden met de bescherming van intellectuele rechten en het management van deze rechten in de praktijk
• tijdens zijn/haar latere beroepsloopbaan een eerste analyse te maken van, en een voorstel te formuleren over, de beschermingsmogelijkheden van nieuwe creaties en vindingen en het verdere beheer ervan

Begintermen

Het college gaat ervan uit dat de studenten geen voorkennis inzake recht in het algemeen of intellectuele rechten in het bijzonder bezitten.  

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Intellectual Property Management (B-KUL-G0B01a)

4 studiepunten : College 26 Tweede semesterTweede semester

Inhoud

De colleges zijn opgedeeld in enkele theoretische modules en een groot aantal gastcolleges.

Tijdens de theoretische modules worden aan de student de basisregels van de hoofddomeinen van de intellectuele rechten (octrooirecht, auteursrecht en merkenrecht) uitgelegd. Dit gebeurt in een voor een niet-jurist begrijpbare taal (zonder verwijzing naar wetteksten) met uitvoerige verwijzingen naar voorbeelden uit de praktijk. Er wordt verder ook ingezoemd op het belang en de betekenis van intellectuele rechten vanuit een breder economisch perspectief.

Alle andere colleges worden ingevuld door gastsprekers uit het bedrijfsleven of het ruimere praktijkveld. Deze sprekers lichten de beschermingsstrategieën toe die hun bedrijven (uit diverse sectoren) tijdens de opeenvolgende stadia van het onderzoek naar, en de ontwikkeling van, nieuwe creaties en producten hanteren. De klemtoon van deze colleges ligt op het ‘management’ van intellectuele rechten in de praktijk. De bedoeling is om de studenten te leren begrijpen waarom en hoe ze in hun latere professionele leven aandacht moeten schenken aan de bescherming van creaties en innovaties door intellectuele rechten.
Voor een overzicht van de verschillende aspecten die aan bod komen, verwijzen we naar de rubriek ‘Toelichting Werkvorm’ met de kalender van de modules en sprekers zoals die tijdens een vorig academiejaar aan bod kwamen.

Studiemateriaal

Studiekost: 11-25 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

- Syllabus M-C Janssens, ‘Basisbeginselen Intellectuele Rechten’, verkrijgbaar bij Acco (elk jaar hernieuwde versie)
- Handouts van de presentaties die tijdens de hoorcolleges worden gebruikt (via Toledo)
- Bundel van voorbeeldvragen op basis waarvan de leerstof kan worden bestudeerd

Toelichting werkvorm

Overzicht van topics die jaarlijks aan bod komen (onder voorbehoud van kleine aanpassingen)

College 1
Inleiding tot het systeem van de intellectuele rechten & Basisbeginselen inzake octrooirecht en concrete betekenis voor werknemers en onderzoekers.
Wat zijn de vereisten voor een octrooi?  Hoe een octrooi aanvragen?  Wat zijn mijn rechten als werknemer, onderzoeker, student?

Prof. Marie-Christine Janssens

College 2
Basisbeginselen inzake auteursrecht en het belang van auteursrecht voor niet-culturele (industriële) creaties: Welke creaties worden beschermd? Hoe verwerft men auteursrecht? Aan wie komt het recht toe en wat is de beschermingsomvang? Welke handelingen kan een gebruiker stellen zonder inbreuk te plegen? s

Prof. Marie-Christine Janssens

College 3
‘Research & Development’ in de biomedische industrie.
Hoe verloopt het onderzoek?  Overzicht van bijzondere aandachtspunten bij beleidsbeslissingen inzake een IE (intellectuele eigendom) beleid.  Getuigenissen aan de hand van ervaringen bij de ontwikkeling van een geneesmiddel.

X., Janssen Pharmaceutica (Johnson & Johnson Patent Law department)

College 4
‘Research & Development’ in de elektronische industrie.
Voor- en nadelen van een samenwerking met andere bedrijven bij de ontwikkeling van een nieuw product. Welke modellen van samenwerking bestaan en welke beleidsbeslissingen komen kijken bij dergelijke samenwerkingen?  Wat is Open Innovation? Getuigenissen aan de hand van ervaringen bij Philips (MiPlaza, Holst Centre, Senseo-story).

X. Philips Intellectual Property & Standards, Eindhoven

College 5
Het belang van Intellectuele Rechten in een ruimer economisch kader: de betekenis van IR in het macro- en micro economisch denken rond innovatie en concurrentie. Hoe kunnen individuele ondernemingen strategisch omgaan met hun intellectuele eigendom?
In een laatste deel wordt ingezoomd op de basisbouwstenen van een licentieovereenkomst.

Prof. Koenraad Debackere


College 6
Octrooirecht - Beleidsmatige vragen
Waarom wel of waarom niet octrooien aanvragen? Welke beleidsopties staan open? Welke licentiepolitiek kan worden gevoerd? Wat betekent ‘waarde-extractie’ uit octrooien?  Met welke problemen kan men geconfronteerd worden? Hoe omgaan met standaarden? Belang van het afsluiten van goede akkoorden als NDA en JDA.

X., Philips Intellectual Property & Standards, Eindhoven

College 7
Het opstarten van een spin-off als mogelijk alternatief voor de valorisatie van creaties en vindingen. Waarom daartoe beslissen? Wat zijn de voorwaarden, aandachtspunten en mogelijke valkuilen? Het college geeft een antwoord op deze vragen en bespreekt de opeenvolgende fasen tussen het bekomen van de onderzoeksresultaten en de ‘closing of the deal’.

Dr. Ir. Rudi Cuyvers, Innovation Manager KU Leuven Research & Development

College 8
Belang van octrooien als bron van informatie voor bedrijven en onderzoekers.
Welke informatie kan iedereen concreet halen uit de verschillende onderdelen van een octrooidocument? Waar vind ik deze informatie (toelichting en demonstratie via Espac@net). In deze module wordt ook een grondige analyse van de inhoud van een octrooidocument gemaakt. Tot slot wordt het belang van deze informatie voor ‘Intelligence & IP landscaping’ aangeduid.

X., Janssen Pharmaceutica (Johnson & Johnson Patent Law department)

College 9
Bescherming voor computerprogramma’s: auteursrechtelijke en/of octrooirechtelijke bescherming. De betekenis en het belang van ‘open source’.

X., IP Counsel, Philips Intellectual Property & Standards, Eindhoven

College 10
Basisbeginselen van het merkenrecht (deel I).  Belang en functie van merken. Wat zijn de vereisten voor een merk?  Hoe bescherming verkrijgen als Benelux, gemeenschaps- of internationaal merk?

Prof. Marie-Christine Janssens

College 11
Merkenrecht bekeken vanuit de praktijk. Hoe gaan bedrijven om met hun merken en welke beleidspolitiek zit daar achter? Hoe wordt een nieuw merk gecreëerd en gelanceerd? Welke strategie wordt gevolgd voor merkbewaking? Deze vragen worden beantwoord aan de hand van getuigenissen vanuit twee verschillende sectoren.

X., verantwoordelijke merkenbeleid OmegaPharma/PerigoCollege 13

College 12
Beschermingsmogelijkheden voor biotechnologische vindingen (enzymen, planten, dieren, mensen, …). Kan je leven octrooieren? Juridische en ethische kwesties.

X., Johnson&Johnson Patent Law Dept.

College 13

Deel 1: Het beschermingssysteem van Tekeningen- en modellen: en niet te verwaarlozen aandachtspunt voor bedrijven. Overzicht van de beschermingsvereisten en wijze van deponeren.

X., Europees en Benelux Merken- en modellenbureau Gevers, Gent.

Deel 2: Het systeem van domeinnamen: geen intellectueel recht maar wel een economisch belangrijke ‘asset’ voor bedrijven. Overzicht van de werking van het systeem. Hoe kunnen conflicten tussen domeinnamen en houders van rechten op die naam worden opgelost?

Peter Vergote, Legal & Administrative manager DNS Belgium vzw

Evaluatieactiviteiten

Evaluatie: Intellectual Property Management (B-KUL-G2B01a)

Type : Examen buiten de normale examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen, Gesloten vragen
Leermateriaal : Geen

Toelichting

Voor (initiële) masterstudenten :

- individueel schriftelijk examen (duurtijd 2 u).
- Tijdstip : er zijn – naar keuze van de student – twee examenmomenten: één tijdens de eerste blokweek en één tijdens de examenperiode
- Het examen bestaat uit 3 onderdelen met gelijke weging van de punten. Minstens twee onderdelen worden samengesteld aan de hand van de vragenlijst die zich in het cursusmateriaal bevindt.
De derde vraag kan een open essayvraag omvatten waarbij aan de studenten gevraagd wordt om een gestructureerd, begrijpelijk en inhoudelijk correct advies af te leveren over een concreet probleem of vraagstelling dat verband houdt met de bescherming en het beleid rond (bepaalde) intellectuele rechten


Voor doctoraatsstudenten : keuze tussen
- (i) individueel schriftelijk examen (zie hoger - masterstudenten ) OF
- (ii) indiening van een paper (ong. 15 à 20 blz) over een door de student vrij te bepalen thema (bij voorkeur aansluitend bij het onderwerp van de doctoraatsverhandeling of specialisatie).

Toelichting bij herkansen

Er is een tweede examenkans in de derde zittijd. De examenvorm en vraagvorm blijven voor beide examenkansen gelijk.

ECTS Materials Selection (B-KUL-H00C0A)

3 ECTS English 22 First termFirst term Cannot be taken as part of an examination contract

Aims

The aims of the course are twofold: on the one hand provide the students with a broad overview of all classes of materials and their salient properties. On the other hand to provide a general method of selection of materials in thermo-mechanical design.

Previous knowledge

General physics and chemistry; introductory courses in materials science covering elementary concepts on microstructure and phase diagrams and on material properties.

Is included in these courses of study

Onderwijsleeractiviteiten

Materials Selection: Lecture (B-KUL-H00C0a)

2.4 ECTS : Lecture 14 First termFirst term

Content

Overview on material classes: Metallic materials, Polymers, Ceramics, Composites

Review on material properties and concomitant measurement techniques

Materials properties and their visual interpretation using material selection charts

Material Selection Methodology using the Grantadesign CES Edupack software (Ashby principle)

Review of Material Processing Techniques

Process selection methodology

Case studies focussing on Material and Process Selection

Eco-Audit tool to perform Life Cycle Impact Analysis

Materials Selection, Computer Class (B-KUL-H00C1a)

0.6 ECTS : Practical 8 First termFirst term

Content

3 Excercise Sessions related to the Lectures focussing on Materials Selection, Process Selection, Cost Calculation and Life Cycle Impact Analysis (Eco-Audit)

Session 1: General Material Selection Methodology, objective and constrain equation, material index, visual interpretation

Session 2: Multiple Objectives and Conflicting Objectives, Performance Index, Ranking$

Session 3: Process Selection, Cost Calculation, Eco-Audit tool

Course material

Ansys Granta EduPack software available via KU Leuven campus licenses

Exercises distrubuted via Toledo

Format: more information

The Ansys Granta EduPack software is used to perform (a) a materials selection, (b) a process selection and (c) eco-audit

Evaluatieactiviteiten

Evaluation: Materials Selection (B-KUL-H20C0a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Reference work

Explanation

The students are evaluated based on an assigment, targeting a materials and process selection for a component at choice. They will hand in a 20 page written report and will come and orally defend their report during an oral exam, which will last approximately 30 minutes.

ECTS Engineering Economy (B-KUL-H00K1A)

3 ECTS English 31 First termFirst term

Aims

The student has a broad view on economical (decision oriented) problems engineers will encounter in their professional career.  The student obtains insights in methods such as PW, FW and AW (present worth, future worth and annual worth), C/B calculations (cost/benefit), replacement decision making and cost estimation.  The student assimilates these methods  to allow for real-life application.

Previous knowledge

bachelor engineering or other bachelor in science & technology

Is included in these courses of study

Onderwijsleeractiviteiten

Engineering Economy: Lecture (B-KUL-H00K1a)

2.44 ECTS : Lecture 20 First termFirst term

Content

The student has a broad view on economical (decision oriented) problems engineers will encounter in their professional career.  The student obtains insights in methods such as PW, FW and AW (present worth, future worth and annual worth), C/B calculations (cost/benefit), replacement decision making and cost estimation.  The student assimilates these methods  to allow for real-life application.

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  • Blank, L. and Tarquin, A., Engineering Economy, 7th edition, McGraw-Hill, NY, 2012
  • academic papers

 

Language of instruction: more information

The course is taught and examined in English

Format: more information

ex cathedra + interactive discussions

Engineering Economy: Workshops (B-KUL-H03K2a)

0.56 ECTS : Practical 11 First termFirst term

Content

Exercises and cases (made available on Toledo beforehand) are solved and discussed. Case studies are exercises placed in a realistic business context, they call for more analysis and insight than classic exercises, as  data need to be distilled from a text describing a business situation, often there are too much data or not enough data (here assumptions are needed), .  Often they call for integration of concepts from different chapters. In the interpretation of the case study results the business context plays an important role: how important is the investment under study for the company in question?  how large can the negative investment value (present worth) be for a strategic investment?

Course material

exercises (Toledo)

Language of instruction: more information

English

Evaluatieactiviteiten

Evaluation: Engineering Economy (B-KUL-H20K1a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions
Learning material : List of formulas, Calculator

Explanation

As this exam is closed book, you cannot bring any written or printed material or laptop/tablet/ ... to the exam, only a simple calculator.  At the exam you will be provided with a formularium, it comes with the exam questions; you cannot bring your own.

ECTS Management and Information Technology (B-KUL-H00K2A)

3 ECTS English 31 First termFirst term

Aims

This course provides insight in the use of IT for management puroposes. The course helps the future manager (in industry, service organisation or government) to focus on the strenghts and weaknesses of IT solutions for supporting the organization's strategy and for managerial decision making and support. Attention is paid to the broad context of IT (technical and managerial aspects, like customer service, human resource aspects, ...) and the (rapid) evolution in this area.

Is included in these courses of study

Onderwijsleeractiviteiten

Management and Information Technology: Lecture (B-KUL-H00K2a)

2.44 ECTS : Lecture 20 First termFirst term

Content

The learning activity for this part of the course consists of four main parts and a closing case study which integrates aspects discussed in the four parts. The four parts are:

Module I: Organizations and IT. This module explores the need for sound IT support for any organization in today’s world.Attention is paid to the potential benefits of IT, but also to the challenges. As such a realistic view on organizational expectations and realizations is achieved.

Module II: Organizational needs and IT strategy. This module continues on the link between organizational needs and IT strategy. The emphasis is on designing an IT system that supports the organization’s core activities in the best possible way.

Module III: Applications/Systems. This module consists of three parts.First part addresses e-business systems and gives an overview of the most common functional (e.g. human resources) and cross-functional (e.g. ERP, enterprise resource planning; CRM, customer relationship management; and SCM, supply chain management) IT systems. The second part focuses on e-commerce. The third part discusses both the organizational background of decision support systems as well as the different types of such systems

Module IV: Management issues. In this module attention is paid to ethical, social and political issues as well as to the management challenges of global systems.

Throughout the whole course aspects of technology, including trends in software & hardware and the impact on the organizational and managerial context are discussed. Another recurring aspects is IT project management, including best practices and pitfalls.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Reference book: Laudon, K.C and Laudon, J.O., Management Information Systems, 14th edition, Pearson, Harlow, 2016
Extra material (cases, papers, .... ) provided through TOLEDO

Format: more information

Interactive classes.  Case presentations and discussions. 

Management and Information Technology (B-KUL-H03K3a)

0.56 ECTS : Practical 11 First termFirst term

Content

Discussion of case studies or academic papers related to  course topics:. preparation in small groups, presentation of conclusions and class discussion for formulating a structured and clear answers.   Group presentation: students prepare a short presentation on an innovative technology or concept, after the presentation a class discussion is held.

D

Course material

Articles and case studies

Format: more information

Guest speakers from industry or service 
organizations are invited.

Evaluatieactiviteiten

Evaluation: Management and Information Technology (B-KUL-H20K2a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Paper/Project, Presentation
Type of questions : Open questions
Learning material : Course material, Reference work

ECTS Maintenance Management (B-KUL-H00M4A)

3 ECTS English 20 Second termSecond term

Aims

The student knows the theoretical foundations for analyzing and optimizing maintenance situations.  The student obtains insight in the practical issues of maintenance and asset management, both in industry and service organizations.

Previous knowledge

bachelor of engineering or other bachelor science & technology

Onderwijsleeractiviteiten

Maintenance Management (B-KUL-H00M4a)

3 ECTS : Lecture 20 Second termSecond term

Content

The course addresses managerial issues in asset/maintenance management for organizations both in industry (production plants) and service industry (hospitals, distribution centra, ...).  Topics included are: organization of the maintenance department (structure of a technical department, technical department in the organization chart), personnel management (scheduling of jobs, safety in working environment),  auditing and performance reporting (follow-up on the performance of the technical department), maintenance concept decisions (from corrective to preventive to predictive to prognostic maintenance, what about Reliability Centered Maintenance, Total Productive Maintenance ...) 
 
The course introduces quantitative managerial decision making models for mailny spare part policies (inventory control), risk management, RAMS estimation (RAM = reliability, availability, maintainability, sustainability), policy optimization/simulation models (e.g. to determine the frequency of maintenance),...  
 
Attention is paid to theoretical basis concepts and to practical applicability

 

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

* Maintenance Management, Pintelon et al., ACCO, Leuven, 2006 (new version expected, 2014)
* Recent journal publications and Internet material
* Slides available on Toledo

Language of instruction: more information

the course is taught and examined in English

Format: more information

* Classes: partly ex cathedra, mainly interactive.  Theory, exercises and cases (guided independent study).

Evaluatieactiviteiten

Evaluation: Maintenance Management (B-KUL-H20M4a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Paper/Project
Type of questions : Open questions
Learning material : Calculator

ECTS Total Quality Management (B-KUL-H00N6A)

3 ECTS English 20 Second termSecond term

Aims

Introduction to Total Quality Management (TQM): philosophy and concepts (part I), tools and techniques (part II)

Identical courses

H00N6B: Total Quality Management

Is included in these courses of study

Onderwijsleeractiviteiten

Total Quality Management (B-KUL-H00N6a)

3 ECTS : Lecture 20 Second termSecond term

Content

The course Total Quality Management (TQM) begins with an introductory chapter which defines some basic concepts in TQM and also gives an overview of the historical evolution of TQM. The first part of the course discusses the TQM organisation for the industrial as well as for the service environment. In this part the role of management in TQM and the importance of the behaviour of workers are studied. Attention is given to the TQM implementation process and the development of a quality system, according ISO 9000. In the second part of the course quantitative techniques frequently used in TQM are studied, for example statistical process control, Pareto analysis, Ishikawa diagrams, etc...

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Goetsch, D.L. and Davis, S., Quality Management for Organizational Excellence: Introduction to Total Quality, 7th edition, Pearson, Boston, 2013

Language of instruction: more information

the course is taught and examined in English

Is also included in other courses

H00N6B : Total Quality Management

Evaluatieactiviteiten

Evaluation: Total Quality Management (B-KUL-H20N6a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions
Learning material : None

Explanation

A formularium will be provided.  For the multiple choice questions a guess correction  is used.

ECTS Ecodesign and Life Cycle Engineering (B-KUL-H00O3A)

3 ECTS English 28 Second termSecond term
Duflou Joost (coordinator) |  Dewulf Wim |  Duflou Joost

Aims

A first aim of this course is to realise a larger consciousness on the consequences of design decisions in the course of a complete product life cycle. To evaluate existing products and design alternatives, and furthermore to better control the design process, a series of analysis techniques and methods for design optimization will be presented.
Special attention goes to the environmental impact of design decisions. The aim here is to educate engineers that are aware of their influence on the living environment and that are able to offer their contribution to a sustainable use of the available raw materials.Along with these themes, the continuous tension between marketing considerations and technical possibilities is not be disregarded. A thorough understanding of the company-economic product life cycle, related costs and derived business models, crucial to assure cost-effectiveness of a company, will thus also be one of the aims.

Previous knowledge

The student has a solid scientific background, preferably engineering.
This course is not specifically connected to a graduating programme, but is rather relevant as a completion to programmes that are (among others) aimed at the development of new products. The contents of the final assignment can be adjusted to the programme of the student. It is recommended to plan the course in a late stage of a master program, so that the lack of technical  luggage does not form an obstacle for the case studies or the final assignment.

Is included in these courses of study

Onderwijsleeractiviteiten

Ecodesign and Life Cycle Engineering (B-KUL-H00O3a)

3 ECTS : Lecture 28 Second termSecond term

Content

Introduction: course info, positioning, overview of the most important environmental effects
Life cycle analysis LCA
DfE techniques:
  - Design guidelines
  - LIDS wheel
  - MET matrix
  - Material choice techniques
  - EPIndicators
  - DfE Toolboxes
  - DfR/DfD techniques
  - Fast LCA methods
  - Parametric LCALife Cycle Costing
Retraction logistics
Industrial ecosystems
Legislation and norms
Software-support: workshop
  - Eco Indicator
  - IdematCase Studies
Final presentations by the students

Course material

Handouts available through Blackboard.

Evaluatieactiviteiten

Evaluation: Ecodesign and Life Cycle Engineering (B-KUL-H20O3a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : None

Explanation

A final assignment per two students results in a report that is presented during the exam period followed by a question session. Timing for this presentation is coordinated per team of students. 

ECTS Toegepaste mechanica 3: matrix- & energiemethoden voor kinetostatica (B-KUL-H01G7A)

3 studiepunten Nederlands 31 Tweede semesterTweede semester

Doelstellingen

Kennis:
Rekenmethodieken voor het systematisch aanpakken en uitwerken van praktische problemen met

  • ruimtelijke geometrie, beweging en uitwendige krachten en krachtenevenwichten van starre lichamen
  • uitwendige krachtenevenwichten, inwendige krachtenevenwichten en vervormingen van vervormbare lichamen en structuren (steeds met energie als unificerend uitgangspunt)

Deze rekenmethodieken vormen de overgang van de vectoriële en/of conceptuele benadering uit Toegepaste Mechanica 1 & 2 naar methoden die geschikt zijn voor computerondersteuning (bv. multibody dynamica, eindige elementen).

Vaardigheden:
Zelfstandig problemen met betrekking tot ruimtelijke geometrie, beweging, uitwendige en inwendige krachtwerking, evenwicht, bewegingsvergelijkingen, en vervorming leren formuleren en oplossen.

Attitudes:

  • Energie als unificerend concept.
  • Aandacht voor eenheden.

Begintermen

  • basisbegrippen van mechanica van starre lichamen: statica, kinematica, dynamica, virtuele arbeid
  • basisbegrippen van matrixrekening
  • basisbegrippen van sterkteleer: normaalkracht, dwarskracht, buigmoment, torsiemoment

Volgtijdelijkheidsvoorwaarden



GELIJKTIJDIG (H01C8A) OF GELIJKTIJDIG (X9X17A) OF GELIJKTIJDIG (X0F54A) OF GELIJKTIJDIG(H01C8B)


H01C8AH01C8A : Toegepaste mechanica, deel 2
X9X17AX9X17A : Klassieke en toegepaste mechanica
X0F54AX0F54A : Klassieke en toegepaste mechanica
H01C8BH01C8B : Toegepaste mechanica 2: dynamica en sterkteleer


Identieke opleidingsonderdelen

X0C85A: Toegepaste mechanica, deel 3

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Toegepaste machanica 3: matrix- & energiemethoden voor kinetostatica: hoorcollege (B-KUL-H01G7a)

2.4 studiepunten : College 16 Tweede semesterTweede semester

Inhoud

Er zijn 8 lessen van telkens 2 uur:

Les 1: principe van virtuele arbeid en energiemethoden voor de statische analyse van stelsels van starre lichamen:

  • herneming uit Toegepaste Mechanica 1 en 2
  • principe van virtuele arbeid en gelijkwaardigheid met evenwichtsvergelijkingen
  • potentiële energie van uitwendige krachten (voor een conservatief krachtenstelsel)
  • energiefunctionaal voor stelsels van starre lichamen
  • praktische toepassingen

Les 2: potentiële energie en kinetische energie in elastische lichamen, definitie van potentiële energie in elastische lichamen

  • in discrete systemen (stelsels van massa's en veren)
  • in staven (normaalkracht)
  • in balken (buiging)

Les 3:energiemethoden voor de analyse van statisch evenwicht van continuë en elastische lichamen:

  • principe van minimum potentiële energie voor statische problemen
  • gelijkwaardigheid met evenwichtsuitdrukkingen (eerste variatie van potentiële energie)
  • stabiliteit van evenwicht (tweede variatie van potentiële energie)
  • eenvoudige praktische toepassingen

Les 4: uitwerking van energiemethoden tot bruikbare rekenprocedures: 

  • uitwerking van differentiaalvergelijking van evenwicht voor staafconstructies door middel van variatierekening
  • benaderingsmethode van Ritz
  • eindige-elementenmethode voor staafconstructies

Les 5: uitbreiding naar dynamisch evenwicht

  • definitie van kinetische energie voor discrete systemen en voor continua
  • principe van Hamilton voor dynamisch evenwicht van starre lichamen
  • principe van Hamilton voor dynamisch evenwicht van elastische lichamen
  • toepassingen

Les 6: Rekenen met oriëntatie in 3D (rotatiematrix en Eulerhoeken)

  • definities en transformaties tussen voorstellingswijzen
  • samengestelde en inverse rotaties

Les 7: Equivalente rotatie-as en -hoek, pose, twist:

  • equivalente rotatie-as en -hoek en verband met rotatiematrix
  • homogene transformatiematrix en eindige verplaatsingstwist voor het beschrijven van een pose (positie+oriëntatie) van een star lichaam
  • tijdsafgeleide van een 3D-pose
  • twist

Les 8: schroefvectoren voor de beschrijving van veralgemeende kracht en snelheid van een star lichaam (twist en wrench):

  • transformatiematrices voor twists en wrenches (verandering van referentie-assenstelsel, verandering van referentiepunt)
  • praktische toepassingen (bv. kinematica en statica van een ruimtelijke manipulator)

Studiemateriaal

Studiekost: 1-10 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Cursustekst uitgegeven door VTK (met voorbeelden, oefeningen en modelexamens + oplossingen).
Slides uitgegeven door VTK.

Toelichting werkvorm

De docent geeft ex-cathedra les.

Toegepaste mechanica 3: matrix- & energiemethoden voor kinetostatica: oefeningen (B-KUL-H01G8a)

0.6 studiepunten : Practicum 15 Tweede semesterTweede semester

Inhoud

zelfde als in hoorcollege

Studiemateriaal

De opgaven van de oefeningen staan in de cursustekst. De oplossingen staan ofwel in de cursustekst of worden na de oefenzitting ter beschikking gesteld op Toledo.

Toelichting werkvorm

De studenten werken in kleine groepen zelfstandig opgave uit, onder begeleiding.

Evaluatieactiviteiten

Evaluatie: Toegepaste mechanica 3: matrix- & energiemethoden voor kinetostatica (B-KUL-H21G7a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Formularium

Toelichting

Het examen is schriftelijk en duurt 3 uur. Het examen is gesloten boek, maar de studenten mogen een voorgeschreven formularium gebruiken.
Er zijn drie vragen, telkens een toepassing. Twee toepassingen gaan over deel 1 (arbeids- en energiemethoden) en één toepassing gaat over deel 2 (matrixmethoden voor ruimtelijke transformaties).
In de quotering is de weging over de beide delen als volgt: 60% voor deel 1 en 40% voor deel 2.  Eventuele afronding gebeurt volgens de gebruikelijke regel, maar ingeval van tekorten op tenminste twee van de drie vragen is de afronding steeds naar beneden.

ECTS Elektrische energie en aandrijvingen (B-KUL-H01L8A)

6 studiepunten Nederlands 56 Eerste semesterEerste semester Uitgesloten voor examencontract

Doelstellingen

Het doel van deze cursus is om elektromagnetische energiesystemen aan te brengen aan ingenieurs die dergelijke elementen later zullen moeten toepassen. Daarom wordt de nadruk gelegd op de gebruiksaspecten van de verschillende systemen. De verschillende systemen komen aan bod: elektrische machines en aandrijvingen, verlichting, voeding van informatietechnologische systemen en opwekking en verdeling van elektrische energie.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Elektrische energie en aandrijvingen: hoorcollege (B-KUL-H01L8a)

5.2 studiepunten : College 36 Eerste semesterEerste semester

Inhoud

De cursus behandelt eerst de algemene aspecten van wisselstroomtechniek. De eenfasige systemen met lineaire ketenelementen worden in transiënte en stationaire toestand behandeld. Daarna komen de driefasige systemen aan bod. Het algemeen elektrisch energiesysteem van productie tot verbruiker is een volgend onderwerp. Hierbij worden niet alleen technische aspecten van centrales nader bekeken, maar worden ook de technische implicaties van de liberalisering van de elektriciteitsmarkt aangegeven Bij de elektrische machines komt als eerste de transformator aan bod: fundamenteel werkingsprincipe, stationaire karakteristieken, eenfasige transformator, driefasige transformator, constructie en speciale transformatoren. Vervolgens worden gelijkstroommotoren behandeld: basisprincipes, opbouw van het magnetisch veld met de nadruk op permanente magneten en stationair gedrag bij toerentalregeling. Bij de wisselstroommachines worden zowel de inductiemotor als de synchrone motor behandeld. Na het draaiveld, dat voor beide machinetypes essentieel is, volgt het stationair gedrag van de inductiemotor en zijn regelgedrag, waarbij de nadruk ligt op het gebruik van frequentie-omvormers. Bij synchrone machines ligt de nadruk enerzijds op grote synchrone generatoren met elektrische bekrachtiging en anderzijds op kleinere permanent-magneetmotoren. Van alle wisselstroommotoren wordt ook de constructie behandeld. Na de elektromagnetische energie-omzetters komen de systemen voor een betrouwbare voeding van gebouwen en voornamelijk informatietechnologische systemen aan bod. Vooreerst worden de beveiligingen en de elektriciteitsverdeelsystemen aan bod. Daarna volgen aspecten van ‘Power Quality’ zoals micro-onderbrekingen in de spanning en harmonischen. Tenslotte worden de systemen besproken die kunnen gebruikt worden om deze problemen op te vangen, zoals correcte aarding, UPS en dieselnoodaggregaten.

Studiemateriaal

Studiekost: 51-75 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Handboeken verkrijgbaar bij ACCO

Elektrische energie en aandrijvingen: oefeningen (B-KUL-H01L9a)

0.4 studiepunten : Practicum 4 Eerste semesterEerste semester

Elektrische energie en aandrijvingen: practica (B-KUL-H01M0a)

0.4 studiepunten : Practicum 16 Eerste semesterEerste semester

Studiemateriaal

Laboratoriumteksten via VTK

Evaluatieactiviteiten

Evaluatie: Elektrische energie en aandrijvingen (B-KUL-H21L8a)

Type : Partiële of permanente evaluatie met examen tijdens de examenperiode
Evaluatievorm : Schriftelijk, Verslag
Vraagvormen : Open vragen

Toelichting

Dit examen bestaat uit twee delen. Het eindresultaat is het gewogen gemiddelde van beide quoteringen.

  • Eerste deel: schriftelijk examen, open boek (oefeningen)
  • Tweede deel: schriftelijk examen, gesloten boek (theorie)

De labozittingen zijn verplicht en worden tijdens de zittingen geëvalueerd, en evenredig met het relatief gewicht van de studiepunten verrekend.

Indien de universiteit wegens overmacht beslist dat de labozittingen niet in hun huidige vorm door kunnen gaan tellen deze niet mee in de berekening van het examencijfer van dit onderdeel.

De wijzigingen als gevolg van de overmachtssituatie zullen op Toledo worden aangekondigd zodra ze bekend zijn.

Toelichting bij herkansen

Een herkansing omvat altijd beide onderdelen van het OPO. De examenvorm voor de derde examenperiode is identiek aan deze van de tweede examenperiode. Labozittingen kunnen niet hernomen worden.

ECTS Beweging en trillingen (B-KUL-H01N0A)

6 studiepunten Nederlands 59 Tweede semesterTweede semester Uitgesloten voor examencontract
Bruyninckx Herman (coördinator) |  Bruyninckx Herman |  Deckers Elke |  Desmet Wim |  N. |  Badri-Spröwitz Alexander (plaatsvervanger)  |  Minder Meer

Doelstellingen

De student kan een geschikt systeem voor bewegings- of krachtoverdracht (stangen- of nok/volgermechanisme) selecteren en kan dit systeem ontwerpen vanuit kinematisch en dynamisch oogpunt. De student kan daarbij procedures voor analyse en synthese van mechanismen selecteren en toepassen zowel in 2D als in 3D. 
De student kan geschikte bewegingstrajecten selecteren voor nok/volgersystemen of voor servogestuurde aandrijvingen, en kan daarbij rekening houden met de trillingsverschijnselen die het bewegingstraject veroorzaakt in flexibele volgersystemen.
De student kan de dynamische vergelijkingen opstellen en oplossen voor lineaire trillingsproblemen. Hij kan trillingsproblemen beoordelen, in het bijzonder het risico en de invloed op mens en machine, en kan trillingsonderdrukkende maatregelen voorstellen en uitwerken.
De student kan gebruik maken van numerieke hulpmiddelen (MATLAB) voor de kinematische en dynamische analyse van mechanismen en voor het analyseren van vereenvoudigde modellen voor complexe trillingsproblemen. Hij kan de bekomen oplossingen en resultaten verifiëren aan de hand van controleberekeningen en kan ze kritisch evalueren op basis van fysisch inzicht en rekening houdend met technologische beperkingen. Hij kan deze numerieke analyses zelfstandig uitvoeren en rapporteren in een duidelijk verslag.

*


Kennis:Rol van kinematische en dynamische analyse en synthese in het ontwerpen van machines.
Procedures voor analyse en synthese.
Vertrouwdheid met veelgebruikte elementen en systemen voor bewegings- of krachtoverdracht: met nadruk op stangen- en nok/volgermechanismen.
Ontwerp van bewegingstrajecten (voor nok/volgersystemen of servogestuurde aandrijvingen) met bijzondere aandacht voor de dynamische verschijnselen veroorzaakt door de beweging in flexibele volgersystemen (d.i. band met deel trillingen).
Basisvergelijkingen, courante terminologie, invloed van mechanische trillingen op mens en machine, procedures voor analyse en synthese, principes van trillingsonderdrukking.
Vaardigheden:
Toepassen van technieken die gekend zijn uit de cursus analytische meechanica voor de kinematische en dynamische analyse van mechanismen in machines (veelal vlakke mechanismen).
Gebruik van computerondersteuning voor kinematische en dynamische berekeningen en voor dynamische simulatie (Applied Motion, MATLAB), m.i.v. tijdsimulatie van een niet-lineair systeem.
Formuleren van een ontwerpprobleem als een optimisatieprobleem.
Opstellen en oplossen van de dynamische evenwichtsvergelijking voor lineaire trillingsproblemen. ontwerpen van trillingsreducerende maatregelen, beoordelen van trillingsproblemen (hinder, risico), gebruik van numerieke hulpmiddelen (Matlab), hanteren van vereenvoudigde modellen voor complexe trillingsproblemen.
Attitudes:
Kritische en creatieve ingesteldheid, ook tijdens analyse van bestaand mechanisme: is dit optimaal? hoe kan dit beter?
Kritische interpretatie van computerberekening op basis van fysisch inzicht.
Aandacht voor fysische interpretatie en technologische beperkingen.
Aandacht voor eenheden.
Aandacht voor verslaggeving.

 

Begintermen

De basis voor dit opleidingsonderdeel is gegeven in de opleidingsonderdelen 'Toegepaste Mechanica: deel 1', 'Toegepaste Mechanica: deel 2', 'Toegepaste Mechanica: deel 3', 'Analyse 1', 'Analyse 2' en 'Toegepaste Algebra'.

Volgtijdelijkheidsvoorwaarden



(SOEPEL(H01B0B) OF SOEPEL (X0A09A) OF SOEPEL(X0F41A)) EN (SOEPEL(H01A4B) OF SOEPEL(X0A02C)) EN (SOEPEL(H01A2B) OF SOEPEL (X0E02A) OF SOEPEL(X0F27A)) EN (SOEPEL (X9X17A) OF SOEPEL(X0F54A) OF SOEPEL (H01C8A) OF SOEPEL(H01C8B)) EN (SOEPEL (H01G7A) OF SOEPEL (X0C85A)) EN (SOEPEL (H01A0A) OF SOEPEL (H01A0B) OF SOEPEL(X0A00C))


H01B0BH01B0B : Toegepaste mechanica 1
X0A09AX0A09A : Algemene natuurkunde: mechanica
X0F41AX0F41A : Algemene natuurkunde: toegepaste mechanica
H01A4BH01A4B : Toegepaste algebra
X0A02CX0A02C : Lineaire algebra
H01A2BH01A2B : Analyse, deel 2
X0E02AX0E02A : Technieken voor wiskundige analyse
X0F27AX0F27A : Analyse en calculus II
X9X17AX9X17A : Klassieke en toegepaste mechanica
X0F54AX0F54A : Klassieke en toegepaste mechanica
H01C8AH01C8A : Toegepaste mechanica, deel 2
H01C8BH01C8B : Toegepaste mechanica 2: dynamica en sterkteleer
H01G7AH01G7A : Toegepaste mechanica 3: matrix- & energiemethoden voor kinetostatica
X0C85AX0C85A : Toegepaste mechanica, deel 3
H01A0AH01A0A : Analyse, deel 1
H01A0BH01A0B : Analyse, deel 1
X0A00CX0A00C : Analyse en calculus


Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Beweging: hoorcollege (B-KUL-H01N1a)

2.7 studiepunten : College 20 Tweede semesterTweede semester
Bruyninckx Herman |  N. |  Badri-Spröwitz Alexander (plaatsvervanger)

Inhoud

Het programma-onderdeel valt uiteen in twee grote delen (Beweging, respectievelijk Trillingen) die elk bestaan uit twee leeractiviteiten (hoorcollege en oefeningen).

*

De cursus omvat de studie van stangen- en nokkenmechanismen, met bijzondere aandacht voor snelheids-, versnellings- en krachtenanalyse van machines. De cursus bevat tevens inleidingen op computergesteunde kinematische en dynamische analyse, en kinematische synthese van mechanismen.
Bijzondere aandacht gaat naar het ontwerp van bewegingstrajecten (voor nok/volgersystemen of servogestuurde aandrijvingen) en de dynamische verschijnselen veroorzaakt door de beweging in flexibele volgersystemen.
Les 1: Inleiding + kinematisch schema en mobiliteit
Les 2: Kinematische analyse van vlakke mechanismen
Les 3: Inverse dynamische analyse van vlakke mechanismen
Les 4: Voorwaartse dynamica en ontwerp van vliegwielen
Les 5: Kinematische en invers dynamische analyse van ruimtelijke mechanismen
Les 6: Kinematische synthese van vlakke mechanismen
Les 7: Bewegingswetten
Les 8: Nokken
Les 9: Dynamisch gedrag van nok/volgersystemen

Studiemateriaal

Studiekost: 26-50 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Slides bij de lessen (uitgegeven door VTK)

Referentiewerken:

R.L. Norton, Design of machinery. An introduction to the synthes is and analysis of mechanisms and machines, McGraw-Hill, 3rd edition, 2004

H.H. Mabie & C.F. Reinholtz, Mechanisms and dynamics of machinery (beschikbaar in Campusbibliotheek)

Toelichting werkvorm

9 hoorcolleges waarvan de inhoud hoger beschreven staat.

Trillingen: hoorcollege (B-KUL-H06N3a)

2.7 studiepunten : College 18 Tweede semesterTweede semester

Inhoud

Het deel Trillingen is opgezet als een inleiding tot mechanische trillingen. De nadruk ligt op het verwerven van fysisch inzicht in de betreffende materie en op de implicaties voor het ontwerp van mechanische constructies. Van de studenten wordt na het verwerken van de cursus verwacht dat zij in staat zijn om eenvoudige trillingsproblemen uit de praktijk exact op te lossen en dat zij voor meer complexe trillingsproblemen in staat zijn om benaderende oplossingen voor te stellen. In de cursus komen zowel discrete als continue systemen aan bod, oplossingsmethodes gebaseerd op de eindige elementen methode worden niet behandeld

Het hoorcollege Trillingen omvat volgende lessen:

  • Les 1: Inleiding – voorbeelden van trillingen bij machines en voertuigen
  • Les 2: Systemen met een vrijheidsgraad (vrije respons)
  • Les 3: Systemen met een vrijheidsgraad (gedwongen respons voor harmonische excitatie)
  • Les 4: Systemen met een vrijheidsgraad (gedwongen respons voor willekeurige excitatie)
  • Les 5 en 6: Systemen met meerdere vrijheidsgraden (vrije respons, gedwongen respons, modale transformatie)
  • Les 7: Continue systemen
  • Les 8: Trillingsisolatie en trillingsonderdrukking: ontwerpaspecten - Invloed van trillingen op de mens
  • Les 9: Trillingen bij roterende machines en verbrandingsmotoren – onbalans - balanceren

Studiemateriaal

Eigen Syllabus: Mechanische Trillingen (uitgegeven bij ACCO)

Beweging: oefeningen (B-KUL-H06N4a)

0.3 studiepunten : Practicum 8 Tweede semesterTweede semester
Bruyninckx Herman |  N. |  Badri-Spröwitz Alexander (plaatsvervanger)

Inhoud

Het programma-onderdeel valt uiteen in twee grote delen (Beweging, respectievelijk Trillingen) die elk bestaan uit twee leeractiviteiten (hoorcollege en oefeningen).

Toelichting werkvorm

Er zijn vier oefenzittingen en één vragenuurtje.
Oefenzitting 1: 
- demonstratie van kinematische analyse van een voorbeeldmechanisme
- studenten passen dit toe op het door hun gekozen mechanisme
Oefenzitting 2:
- demonstratie van dynamische analyse van een voorbeeldmechanisme
- studenten passen dit toe op het door hun gekozen mechanisme
Oefenzitting 3:
- studenten werken de kinematisch en dynamische analyse van het door hun gekozen mechanisme verder af
Vragenuurtje: 
- studenten kunnen nog bijkomende vragen stellen in verband met de opgave over het stangenmechanisme.
Oefenzitting 4:
- studenten kiezen, in functie van hun individuele opgave, een passende hefwet, ontwerpen de geometrie van de nok, kiezen een geschikte terugstelveer, maken een dynamische analyse van het nok/volgermechanisme, ontwerpen een vliegwiel voor de nokkenas, en breiden tenslotte de dynamische analyse uit door rekening te houden met de flexibiliteit van de volger (één flexibele graad van vrijheid).

Trillingen: oefeningen (B-KUL-H06N5a)

0.3 studiepunten : Practicum 13 Tweede semesterTweede semester

Inhoud

Het onderdeeel Trillingen - oefeningen omvat 4 oefeningsessies in PC-klas waarbij met behulp van Matlab onder begeleding eenvoudige trillingsproblemen opgelost worden.  

Evaluatieactiviteiten

Evaluatie: Beweging en trillingen (B-KUL-H21N0a)

Type : Partiële of permanente evaluatie met examen tijdens de examenperiode
Evaluatievorm : Paper/Werkstuk, Mondeling
Vraagvormen : Open vragen
Leermateriaal : Formularium, Computer

Toelichting

Deel 1 Beweging
De evaluatie gebeurt aan de hand van twee opgaven waarin de studenten in groepjes van twee een probleem oplossen met behulp van MATLAB op PC.  Deze twee opgaven hebben betrekking op:
- kinematische en dynamische analyse van een mechanisme (mechanisme zelf kiezen)
- ontwerp van een nok/volger-systeem m.i.v. de analyse van de beweging en de krachten in een flexibel volgermechanisme.
 
De opgaven worden ingeleid in de oefenzittingen.
De studenten maken een verslag dat wordt verbeterd en teruggegeven. Een eerste quotering gebeurt aan de hand van dit schriftelijk verslag. Nadien is er nog een evaluatiegesprek met docent, studenten en begeleidende assistenten, waarna de eindquotering wordt vastgelegd. Dit evaluatiegesprek heeft plaats tijdens de examenzittijd, in Teams. Bij een eventuele tweede zittijd herwerken de studenten hun werkjes en heeft er een nieuw evaluatiegesprek plaats.
De voorzijne tijd voor deze werkjes is 60 uur/student.

Deel 2 Trillingen
Mondeling . Gebruik van formularium en toegang tot Matlab.

De quoteringen van beide delen worden samengevoegd met gelijk gewicht. Indien er op één of twee onderdelen minder dan 10 op 20 wordt behaald, wordt het totaal naar beneden afgerond. Indien er voor een deel minder dan 8 op 20 wordt behaald, wordt de totale score begrensd op 9 op 20.

ECTS Energieconversiemachines en -systemen (B-KUL-H01N2A)

6 studiepunten Nederlands 57 Tweede semesterTweede semester Uitgesloten voor examencontract
Baelmans Tine |  Horsten Niels (plaatsvervanger)

Doelstellingen

Toepassen van de basiswetten van de natuurkunde en de thermodynamica voor de analyse van energieconversiemachines en -systemen. Inzicht verwerven in de werking, toepassingsmogelijkheden, rendementen van zuiger- en turbomachines en van thermodynamische cycli. Kennismaking met uitvoeringen van de machines en systemen in deze domeinen.

Tijdens de oefenzitting wordt beoogd om de theorie verder te verwerken en te leren toepassen.

Begintermen

Voor dit opleidingsonderdeel is een basiskennis van de analytische mechanica en van de thermodynamica vereist.

Identieke opleidingsonderdelen

X0C81A: Energieconversiemachines en -systemen

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Energieconversiemachines en -systemen: hoorcollege (B-KUL-H01N2a)

5.2 studiepunten : College 36 Tweede semesterTweede semester
Baelmans Tine |  Horsten Niels (plaatsvervanger)

Inhoud

1. Basisvergelijkingen (3 lessen)

  • Inleiding en basisvergelijkingen: integraalvergelijkingen voor continuïteit, momentum, impulsmoment, 1e en 2e hoofdwet.
  • Exergie en irreversibiliteit
  • Stroomlijnvergelijkingen

 

2. Basistoepassingen (2 lessen)

 

  • Stromingen doorheen leidingen: straalpijpen en diffuseurs, de transformaties van Fanno en Rayleigh en normale schokgolven
  • Basisprincipes van de compressie- en expansiemachines: polytropische wet en meertrapscompressie

 

3. Energieconversiemachines (7 lessen)

 

  • Volumetrische machines: zuigerpompen en andere volumetrische pompen, maximale zuighoogte, zuigercompressoren en andere volumetrische compressoren (2 lessen)
  • Turbomachines: centrifugale en axiale pompen, ventilatoren en compressoren, schaalwetten, hydraulische turbines, stoomturbines, gasturbines: toepassingen en aanwendingsproblemen (5 lessen)

 

4. Energieconversiesystemen (6 lessen)

 

  • Vermogenproductie: Rankine, Brayton, procesverbetering door toepassing van regeneratie, heroververhitting, gecombineerde processen (STEG, WKK), verbrandingsmotoren (3 lessen)
  • Koelmachines: compressiekoelmachine en inverse Braytoncyclus (1 les)
  • Klimaatregeling (1 les)
  • Verbrandingsinstallaties (1 les)

Studiemateriaal

Studiekost: 26-50 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Energieconversiemachines en -systemen: oefeningen (B-KUL-H01N3a)

0.4 studiepunten : Practicum 10 Tweede semesterTweede semester

Inhoud

  • Stromingen door leidingen
  • Zuiger- en turbomachines
  • Cycli

Studiemateriaal

Oefeningenbundel

Energieconversiemachines en -systemen: practica (B-KUL-H01N4a)

0.3 studiepunten : Practicum 8 Tweede semesterTweede semester

Inhoud

In de practica wordt dieper ingegaan op de volgende onderwerpen:

  • systeemkarakteristieken en schaalwetten van pompen
  • klimaatregeling
  • de werking van WKK, energiebalans van de verbranding

Energieconversiemachines en -systemen: seminaries (B-KUL-H01N5a)

0.1 studiepunten : College 3 Tweede semesterTweede semester

Inhoud

Centralebezoek

Evaluatieactiviteiten

Evaluatie: Energieconversiemachines en -systemen (B-KUL-H21N2a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen, Gesloten vragen
Leermateriaal : Formularium, Rekenmachine

Toelichting

Het examen toetst zowel theoretische aspecten als de vaardigheid om de leerstof toe te passen.

ECTS Selectie en dimensionering van machine-elementen (B-KUL-H01N8A)

6 studiepunten Nederlands 57 Tweede semesterTweede semester

Doelstellingen

De student heeft inzicht in de werking van een machine en haar onderdelen, en hij kan zelfstandig dimensioneringsberekeningen uitvoeren:

  • De student kent de belangrijkste groepen van machinecomponenten. Hij kan de functie van de component in de werking van een machine beredeneren en omschrijven. Hij kan een vergelijkende studie uitvoeren en een gepaste component selecteren.
  • De student kan een verband leggen tussen de toepassingsprincipes van een machinecomponent en de basisbegrippen uit de mechanica die eraan ten grondslag liggen. Hij kan een analyse uitvoeren op de krachtswerking in de machine en de component, en op de beweging van de component. Hij kan de modellen en de berekeningsprincipes uit de mechanica toepassen, met de benaderingen die voor machinecomponenten gangbaar zijn.
  • De student kan catalogen van machinecomponenten consulteren, en de gegevens opzoeken die voor de dimensionering van een component relevant zijn.

Begintermen

  • toegepaste mechanica : evenwicht van statisch bepaalde systemen in een driedimensionale ruimte, kinematica van een vlakke beweging, en dynamica in een vlakke beweging
  • sterkteleer : spanningsberekening in staven en balken met een massieve sectie onder normaalkracht, onder dwarskracht, onder buiging, en in staven met een axisymmetrische sectie onder torsie
  • materiaalkunde : elastisch materiaalgedrag in een éénassige spanningstoestand, vloeigrens

Volgtijdelijkheidsvoorwaarden



GELIJKTIJDIG (H01C8A) OF GELIJKTIJDIG(H01C8B) OF GELIJKTIJDIG (X9X17A) OF GELIJKTIJDIG(X0F54A)


H01C8AH01C8A : Toegepaste mechanica, deel 2
H01C8BH01C8B : Toegepaste mechanica 2: dynamica en sterkteleer
X9X17AX9X17A : Klassieke en toegepaste mechanica
X0F54AX0F54A : Klassieke en toegepaste mechanica


Identieke opleidingsonderdelen

X0C69A: Selectie en dimensionering van machine-elementen

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Selectie en dimensionering van machine-elementen: hoorcollege (B-KUL-H01N8a)

4 studiepunten : College 27 Tweede semesterTweede semester

Inhoud

Machinecomponenten en principes van dimensionering op sterkte, stijfheid en vermoeiing :

  • verbindingstechnieken : lassen, klinkverbindingen en schroefverbindingen
  • transmissieassen : statisch bepaald en statisch onbepaald
  • transmissies : riemen, kettingen, tandwielen
  • componenten van transmissiesystemen : lagers, koppelingen
  • maattoleranties

Na een opfrissing van de basisprincipes uit de sterkteleer komen drie grote delen en twee kleinere delen aan bod :
0. basisprincipes van sterkteleer en dimensionering (6 uur)

  • overzicht van de voornaamste principes uit de sterkteleer voor berekening van snedekrachten, spanningen en vervormingen van staven en balken
  • specificaties voor dimensionering op sterkte en op stijfheid
  • toelaatbare spanningen

1. verbindingstechnieken (6 uur)

  • lassen
  • klinkverbindingen
  • schroefverbindingen

2. transmissieassen (7 uur)

  • statisch bepaalde assen : sterkte en stijfheid
  • statisch onbepaalde assen : superpositiemethode

3. maattoleranties (1 uur)
4. componenten van transmissiesystemen : wentellagers (1 uur)
5. transmissies (11 uur)

  • riemen
  • kettingen
  • tandwielen

Studiemateriaal

Studiekost: meer dan 100 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Er zijn  twee bronnen:

  • reeks "Roloff-Matek Machine-onderdelen" : handboek (verplicht), tabellenboek (verplicht), opgavenboek (facultatief)
  • bijkomende cursustekst over het deel transmissieassen

Enkel het handboek en het tabellenboek Roloff-Matek zijn consulteerbaar bij het examen (alleen in onbeschreven toestand), met uitsluiting van elke andere bron.

Toelichting werkvorm

De docent geeft ex-cathedra les.

Selectie en dimensionering van machine-elementen: oefeningen (B-KUL-H01N9a)

1.4 studiepunten : Practicum 22 Tweede semesterTweede semester

Inhoud

Machinecomponenten en principes van dimensionering op sterkte, stijfheid en vermoeiing :

  • verbindingstechnieken : lassen, klinkverbindingen en schroefverbindingen
  • transmissieassen : statisch bepaald en statisch onbepaald
  • transmissies : riemen, kettingen, tandwielen
  • componenten van transmissiesystemen : lagers, koppelingen
  • maattoleranties

De oefeningen sluiten aan bij de onderwerpen die in de hoorcolleges zijn behandeld.
0. basisprincipes van sterkteleer en dimensionering (2 uur)

  • toepassing van de voornaamste principes uit de sterkteleer : bepaling van diagrammen van snedekrachten
  • berekening van sectie-eigenschappen en spanningen

1. verbindingstechnieken (5 uur)

  • lassen
  • klinkverbindingen
  • schroefverbindingen

2. transmissieassen (8 uur)

  • statisch bepaalde assen : sterkte en stijfheid
  • statisch onbepaalde assen : superpositiemethode

3. maattoleranties (1 uur)
4. componenten van transmissiesystemen : wentellagers (1 uur)
5. transmissies (5 uur)

  • riemen
  • kettingen
  • tandwielen

Studiemateriaal

reeks "Roloff-Matek Machine-onderdelen" :

  • handboek (verplicht)
  • tabellenboek (verplicht)
  • opgavenboek (aanbevolen)

eigen cursustekst, bij het deel over transmissieassen.
Het handboek en het tabellenboek zijn consulteerbaar bij de evaluatie.

Toelichting werkvorm

De studenten lossen de opgaven op, individueel of in samenwerking met buurstudenten.  De docent verklaart de manier van aanpak.

Selectie en dimensionering van machine-elementen: seminaries (B-KUL-H01O0a)

0.6 studiepunten : Practicum 8 Tweede semesterTweede semester

Inhoud

De onderwerpen zijn complementair aan de hoorcolleges en bijbehorende oefeningen.  4 onderwerpen komen aan bod :

  • veren
  • koppelingen : niet-schakelbaar en schakelbaar
  • hydraulische aandrijvingen
  • pneumatische aandrijvingen

Studiemateriaal

reeks "Roloff-Matek Machine-onderdelen" :
  + handboek (verplicht)
  + tabellenboek (verplicht)
  + opgavenboek (aanbevolen)
eigen transparanten, bij de seminaries over hydraulische en pneumatische aandrijvingen

Toelichting werkvorm

De docent geeft een korte beschrijving van de werking van de componenten en verklaart de principes en procedures van selectie en dimensionering.  De studenten lossen nadien de opgaven op, individueel of in samenwerking met buurstudenten.  De docent verklaart de manier van aanpak.
De aanwezigheid en de actieve participatie van de student tijdens de seminaries zijn verplicht.  De student krijgt in elk seminarie enkele opgaven, die bij het einde van de sessie worden ingezameld.

Evaluatieactiviteiten

Evaluatie: Selectie en dimensionering van machine-elementen (B-KUL-H21N8a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Mondeling, Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Naslagwerk, Cursusmateriaal, Rekenmachine

Toelichting

De examenvorm is schriftelijk met mondelinge toelichting.

De student kan gebruik maken van het handboek en het tabellenboek uit de reeks "Roloff-Matek machine-onderdelen", met uitsluiting van elk ander document.  Beide boeken kunnen alleen gebruikt worden in onbeschreven toestand.
Elke student krijgt drie grote vragen, waarvan telkens één over de delen verbindingstechnieken, transmissieassen en transmissies.  In deze vragen zitten ook bijvragen over maattoleranties en wentellagers.  Voor twee van de drie vragen is er na schriftelijke voorbereiding een individuele mondelinge bespreking. Afhandeling van de derde vraag is enkel schriftelijk. Inzameling van de kopijen vindt plaats vier uur na aanvang van de sessie.

In de quotering is de weging voor de drie vragen gelijk.  Eventuele afronding gebeurt volgens de gebruikelijke regel, maar ingeval van tekorten op tenminste twee van de drie vragen is de afronding steeds naar beneden.

Voor de student die de seminaries actief heeft bijgewoond valt de stof weg die in de seminaries is behandeld.  De student die één of meerdere van de seminaries niet heeft bijgewoond krijgt een bijkomende vraag uit het of de gemiste seminaries, die schriftelijk wordt ingediend binnen dezelfde tijd.

 

ECTS Productietechnieken en -systemen (B-KUL-H01O1A)

6 studiepunten Nederlands 69 Tweede semesterTweede semester Uitgesloten voor examencontract

Doelstellingen

Dit opleidingsonderdeel verschaft inzicht in de werking van een mechanisch productiebedrijf en in de fabricageprocessen die hierbij worden gebruikt. Meer bepaald beoogt het:

  • inzicht te verschaffen over de werking en de organisatie van discrete-goederen-frabricagebedrijven en hun verschillende departementen: engineering, werkvoorbereiding, productie, kwaliteitscontrole, enz.
  • de student vertrouwd te maken met de basisbegrippen en theorieën van productieprocessen: meer bepaald, verspaningsprocessen (bv. frezen of slijpen), omvormprocessen (bv. plaatbuigen, ponsen), lasprocessen, enz.
  • de basiskennis bij te brengen nodig voor verdere studie over flexibele productiesystemen, automatisering en mechatronica in de productie, computergesteund ontwerpen en fabricage (CAD/CAM), CIM (Computer Integrated Manufacturing), mechanisch verspanen, omvormen (smeden, extruderen, spuitgieten,...), niet-conventioneel bewerken (laserstraal, waterstraal, elektrochemisch bewerken, stereolithografie,...), enz.

Begintermen

Om dit opleidingsonderdeel te volgen is basiskennis over materiaalkunde (Fe-C diagram, hardheid,...) en mechanica (krachten, vermogens, aandrijvingen,...) vereist.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Productietechnieken en -systemen: hoorcollege (B-KUL-H01O1a)

4 studiepunten : College 30 Tweede semesterTweede semester

Inhoud

Hoorcolleges:
* Inleiding tot de discrete productie:
   - Werking van een discrete-goederen-fabricagebedrijf; taakverdeling onder de afdelingen; relatie ontwerp-productie, productie-werkvoorbereiding, productie-kwaliteitszorg, productie-productieplanning, enz.
   - Overzicht van de productieprocessen: oervormen (bv. gieten), omvormen (bv. smeden), verspanen (bv. frezen), niet-conventioneel bewerken (bv. laserbewerken), materiaalgroeitechnieken (rapid prototyping), verbinden (bv. lassen), nabehandelen (bv. harden of bedekken).
 
* Basisbegrippen over verspaning: gereedschappen, gereedschapsgeometrie, verspaningsparameters (snijsnelheid, voeding, ingrijping), snede, spaanslankheid, enz.
 
* Materialen voor snijgereedschappen voor verspaning en omvormen.
 
* Basistheorie van de verspaning geïllustreerd a.h.v. een voorbeeld van een verspaningstechniek met enkelvoudige snijkant, in casu 'draaien':
   - Fysische modellen
   - Empirische modellen: standtijdsvergelijking, snijkrachtvergelijking,...
 
* Kostenberekening, optimalisatie en inleiding tot de werkvoorbereiding.
 
* Voorbeeld van een verspaningstechniek met meervoudige gecontroleerde snijkanten, in casu 'frezen':
   - Beschrijving en begrippen;
   - Toepassing/uitbreiding theorie.
 
* Voorbeeld van een verspaningstechniek met veelvuldige ongecontroleerde snijkanten, in casu 'slijpen':
   - Beschrijving en begrippen;
   - Toepassing/uitbreiding theorie.
 
* Voorbeeld van een omvormtechniek, in casu 'plaatbewerken door ponsen, buigen en kappen':
   - Beschrijving en begrippen;
   - Toepassing en theorie.
 
* Voorbeeld van een verbindingstechniek, in casu 'lassen'.

Studiemateriaal

Studiekost: meer dan 100 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Cursustekst: J.P. Kruth, "Productietechnieken en -systemen", ACCO uitgeverij.

Boek: H. Kals et al., "Industriële productie - Het voortbrengen van mechanische producten", 6e druk, Boom Uitgevers Amsterdam (2018) (aanvullend materiaal, vrijblijvend, verschillende edities beschikbaar in de bibliotheek)

Productietechnieken en -systemen: practica, seminaries en bedrijfsbezoeken (B-KUL-H01O2a)

2 studiepunten : Practicum 39 Tweede semesterTweede semester

Inhoud

Seminaries en practica:
Dit omvat een achttal opdrachten waarbij de student zelf in de werkplaats producten aanmaakt op manueel bediende machines en op computergestuurde machines (CNC). Daarnaast zijn er demonstraties op zowel conventionele als niet- conventionele productiemachines (incl. lasersnijden, vonkerosie, stereolithografie, robots). Andere topics worden aangebracht tijdens filmzittingen en computeroefeningen.

Toelichting werkvorm

Verplichte activiteiten in de labo's/werkplaatsen van het departement Werktuigkunde, seminaries en fabrieksbezoek.

Evaluatieactiviteiten

Evaluatie: Productietechnieken en -systemen (B-KUL-H21O1a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Mondeling, Schriftelijk
Vraagvormen : Gesloten vragen, Meerkeuzevragen, Open vragen
Leermateriaal : Formularium, Rekenmachine

Toelichting

De evaluatie van seminaries en practica wordt verwerkt in de examenpunten van het gehele opleidingsonderdeel.

Schriftelijk examen met mondelinge toelichting.

 

ECTS Production Systems: Machine Tools, Flexible Computer Integrated Production (B-KUL-H01Z4A)

6 ECTS English 56 First termFirst term Cannot be taken as part of an examination contract

Aims

The student learns and knows the structure of machine tools and flexible manufacturing systems. He can analyze an existing production system and explain the functions of the various components and systems (construction of the machine, machine tool control from CAD, ...,..). Given a CAD-model of a mechanical product, the student can select the most optimal operations (process planning) and can generate the different programs required to control the flexible production system. More specific objectives can be found under the description of the various related learning zctivities (OLA's).

*

1. The student knows and learns how modern production machines and/or systems constructed. The student can explain the role and function of the different components (frames, guides, actuators, control,..) of an existing machine or system (based on real machine or a drawing/model). 
2. Based on a given product specification (dimensions, precision, lot sizes, ..), the student can conceptually design a machine / system conception (component selection).
3. The student knows the different ways to automate a production machine/system (computer control). He learns how the control of a production system is performed.
4. The student knows the problems related to the thermal and dynamic behavior of production machines and systems. He also learns the methods / procedures for the improvement of the thermal and dynamic behavior of the machine tool/system. 
5. The student knows the procedures (and methods) for the purchase of a production machine and system. This will include methods to measure the accuracy, dynamic and thermal behavior of the machine tool.  

*

Based on the knowledge gained in the lectures, this learning activity has the following goals: 
1. The student can indicate the different components of an existing machine tool and explain the functions of these components. 
2. Based on a given production order a production machine and / or system, the student has to conceive a production machine, including the necessary calculations
3. The student can automate an existing machine (switching of components (eg. actuators) and programming of it  using a PLC.
4. The student performs the quality control and evaluation of a machine tool (dynamic, thermal)

*

The student can independently generate the input (data files) for the computer controlled machining of a workpiece. Given a CAD model of a workpiece, the student has to make, using a commercially available CAPP/CAM system, a process plan and for each operation the required machine tool programs 

*

1. The student learns and knows the various methods (hand-programming, programming languages​​, CAM,...) to program computer controlled machine tools and measuring machines 
2. The student knows the various software blocks and databases (e.g. CAM postprocessor, CL-data,...) and know how they are linked to each other.
3. The student learns and knows the different algorithms to calculate toolpaths for various machining methods: point to point machining, contour machining and operations for complex shaped surface machining. He should also know the different CAD representation models and know what can be achieved with each model. He learns the capabilities of feature-based programming systems.
4. The student learns and knows the various methods of computer aided process planning (CAPP). He knows the principles, algorithms, advantages and disadvantages. The student can make, for given work piece, a complete process plan using the algorithms he has learned. 

Previous knowledge

Basic knowledge of machine construction (machine elements), production techniques and materials.
Basic knowledge CAD

Is included in these courses of study

Onderwijsleeractiviteiten

Production Machines and Systems: Lecture (B-KUL-H04W0a)

2.4 ECTS : Lecture 18 First termFirst term

Content

The course comprises the following chapters:


 

  • Concepts for production machines and systems
  • Construction of machine tools (building forms, materials, construction, ..)
  • Tool spindles (construction, drives, tool holder systems) 
  • Clamping, slides, .. (guides, drives, positioning systems, ..)
  • Controllers (PLC, NC programming, "feature-based" controls, communications, adaptive control)
  • Flexible production systems (integration of machines, palletizing, communication between machines, ..)
  • Thermal stability of machine tools
  • Dynamic behavior of machine toolsQuality control of machine tools 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

The course text is a set of detailed slides (text provides enough to completely understand the content). This slides are available at Toledo 

Format: more information

Classical lectures! The teacher covers the material using PowerPoint presentations, supplemented by notes on the blackboard

Is also included in other courses

H04W0A : Production Machines and Systems

Computer Integrated Production: Lecture (B-KUL-H04W8a)

2.4 ECTS : Lecture 18 First termFirst term

Content

The course contains the following chapters:

1. Introduction - overview Computer aided manufacturing (link from CAD to the production machine)
2. Recapitulation of CAD systems (CAD modeling systems, ..) - serves as the basis for the further detailed discussion of CAM systems
3. Principles of tool path generation (CAM) for various purposes (point to point operations, contour machining, machining of complex shapes)
4. Feature-based toolpath generation
5. NC post-processors (link CAM to NC machine)
6. Principles, methods and algorithms for computer aided process planning
7. Computer controlled clamping of workpieces
8. Computer aided quality control

Course material

The course text is a set of detailed slides (text provides enough to completely understand the content). This slides are available at Toledo 

Format: more information

Online lectures! The teacher covers the material using PowerPoint presentations, supplemented by notes on the blackboard

Is also included in other courses

T42CIM : Computer-Integrated Manufacturing

Computer Integrated Production: Excercises (B-KUL-H04W9a)

0.6 ECTS : Practical 10 First termFirst term

Content

There are four sessions offered (using an available CAPP/CAM system)

Session 1: Introduction (learning to use the system) + toolpath generation for easy turning and milling operations.

Session 2: tool path generation for machining of complex geometries

Session 3 & 4: Calculation of a complete process plan and for each operation the right machine program for a give complex shaped part. After having made all the programs, the workpiece will be machined on an available computer controlled multi-tasking machinel.

Course material

For the various practical sessions, course material is available on Toledo

Format: more information

The student works out the sessions in an independent way. The CAD/CAM system ESPRIT is available.

Production Machines and Systems: Laboratory Sessions (B-KUL-H04X1a)

0.6 ECTS : Practical 10 First termFirst term

Content

The four objectives are translated into four practical sessions:
 
Session 1 & 2 (2x2, 5 hours): Study of the construction of a production machine / system. Firstly, a number of production machines / systems (available in the workshop of the department of mechanical engineering) are explained. The student must also independently analyze an existing machine. Furthermore, during this practicum a production machine / system is designed based on a given product specification.
Session 3: Actuation of machine tools (PLC, positioning) 
Session 4: Evaluation of machine tools (accuracy of the machine, dynamic behavior, ..)

Course material

For the various practical sessions, course material is available on Toledo

Format: more information

The students work in a lab session in groups of 4 students. If a guiding text (explaining the lab session) is available, it should be read in advance. The students are supervised by an assistant, but the practical session should be done by the student as independent as possible.

Is also included in other courses

H04W0A : Production Machines and Systems

Evaluatieactiviteiten

Evaluation: Production Systems: Machine Tools, Flexible Computer Integrated Production (B-KUL-H21Z4a)

Type : Exam during the examination period
Description of evaluation : Oral, Written
Type of questions : Open questions
Learning material : None

Explanation

Part "Production Machines and Systems" : Oral exam
Part "Computer Integrated Production" : Written exam
Both parts are closed book

Lab session attendance is compulsory.
Unjustified absence for a lab session results in a score of 0/20 for the whole course.

Information about retaking exams

It is not possible to retake lab sessions, so a retake of the exam is not possible in case of an unjustified absence for a lab session.

ECTS Robotics (B-KUL-H02A4A)

4 ECTS English 20 Second termSecond term Cannot be taken as part of an examination contract
Bruyninckx Herman (coordinator) |  Bruyninckx Herman |  Detry Renaud |  N. |  Aertbeliën Erwin (substitute) |  Decré Wilm (substitute)  |  Less More

Aims

This course is an introduction to Intelligent Robotic Systems, i.e., machines that move (themselves and/or objects in their environment) and sense what is going on in their (immediate) neighbourhood, in order to achieve a given goal under uncertain environment conditions. 

The course covers fundamentals of robot modelling, control, and programming. Furthermore, specific attention goes to sensor-guided robots and to applying AI techniques, in a broad sense, to robots, which poses challenges that are not apparent in other contexts that do not consider embodied agents.  

This course will cover both "classical" AI techniques that are easily parametrized by an expert, and techniques that learned from data and demonstrations.

After taking this course, the student should be able to: 

  • analyse, develop, and use kinematic and dynamic models of robot systems 
  • design motion and sensor-guided control strategies, and select the most suitable strategy for an application at hand 
  • learn to analyse robotics applications  and identify what aspects lend themselves to a AI solutions

Previous knowledge

This course is accessible as an optional course to last-year master students, or to master-after-master students. Hence, a master level background is expected. 

The course requires background in programming, engineering mechanics, linear algebra and basic differential and integral calculus.  Mostly Python will be used in the exercise sessions. 

Is included in these courses of study

Onderwijsleeractiviteiten

Robotics (B-KUL-H02A4a)

4 ECTS : Lecture 20 Second termSecond term
Bruyninckx Herman |  Detry Renaud |  N. |  Aertbeliën Erwin (substitute) |  Decré Wilm (substitute)

Content

Robotics – theory lectures (3 ects) 

Lectures cover: 

  • introduction to software development for robots 
  • robot kinematics and dynamics 
  • robot motion control and sensor-guided control, free-space and in-contact tasks 
  • trajectory optimization (based on numerical optimization techniques) 
  • dealing with uncertainty / estimation in robotics 
  • classical motion planning and learning methods for motion planning 
  • learning from demonstration 

 

Robotics – exercise and (virtual) laboratory sessions (1 ects) 

  • (Computer) exercises and interactive lab visits on the lecture material

Course material

The study material consists of lecture notes, including paper references and book excerpts. 

Evaluatieactiviteiten

Evaluation: Robotics (B-KUL-H22A4a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material

Explanation

Students, in groups of two or, exceptionally, individually: 

  • Do a homework assignment consisting of a set of computer programming exercises, and hand in a short report and their code. 
  • Do a short research project. A set of possible projects will be made available by the lecturers. 

During the examination period there is an oral defence covering both the homework assignment and the research project. The homework assignment counts for 25% of the grade, the research project for 75%. 

ECTS Uncertainty in Artificial Intelligence (B-KUL-H02D2A)

4 ECTS English 47 First termFirst term
De Raedt Luc (coordinator) |  De Laet Tinne |  De Raedt Luc

Aims

The student understands and appreciates the role and need for uncertainty in artificial intelligence systems.

The student knows, understands and is able to apply the graphical model approach for dealing with uncertainty; they are familiar with the key concepts and algorithms underlying graphical models such as Bayesian networks (directed graphical models), Markov networks (Markov random field, undirected graphical model), Factor graphs, and Hidden Markov models such as modelling, inference and learning. They are familiar with applications of these techniques.

The student understands how techniques for reasoning about uncertainty can be integrated with logic for reasoning and learning.

Previous knowledge

The student is familiar with the basic concepts of discrete probability and mathematics.
Knowledge of calculus is useful but not required.

Is included in these courses of study

Onderwijsleeractiviteiten

Uncertainty in Artificial Intelligence: Lecture (B-KUL-H02D2a)

3 ECTS : Lecture 17 First termFirst term

Content

Bayesian probability theory: modelling, inference, reasoning, decision making

Graphical models -- Bayesian networks, Markov Networks and Factor Graphs

Independence in graphical models

Inference algorithms 

Hidden and observable parameters

Learning

Dynamic systems (such as Hidden Markov Models and Kalman Filters)

Combining logic with graphical models

Applications

Course material

The  course is based on (selected) parts of David Barber's forthcoming book on Bayesian Reasoning and Machine Learning, available from http://www.cs.ucl.ac.uk/staff/d.barber/brml and some additional materials.

Uncertainty in Artificial Intelligence: Exercises (B-KUL-H00H2a)

0.5 ECTS : Practical 15 First termFirst term

Content

There are around 6 exercise sessions (mostly with pen and paper) on various aspects of uncertainty reasoning and graphical models.

Uncertainty in Artificial Intelligence: Project (B-KUL-H08M4a)

0.5 ECTS : Assignment 15 First termFirst term

Content

Each year students have to make one or more assignments and hand in their solution. This can take the form of traditional exercises or of a small project with software for graphical models.

Format: more information

The project consists of one or more assignments, possibly involving tasks with implementations of graphical models.

Evaluatieactiviteiten

Evaluation: Uncertainty in Artificial Intelligence (B-KUL-H22D2a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Report
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

The evaluation consists of 
    closed book exam (with the use of a formularium, during the exam period, by far the most important part of the evalution), and 
    reports on the assignments.

Information about retaking exams

The exam can be retaken but the assignments cannot be retaken.

ECTS Design and Analysis of Experimentation (B-KUL-H02V8A)

3 ECTS English 20 First termFirst term

Aims

At the end of this course, students will be able to describe and analyze experimental datasets and can design an experimental campaign that minimizes work load. They know features and limitations of statistical techniques for design and analysis of experimentation. This brings them into the position to choose a method that is suitable to draw statistically significant conclusions from raw data. Students have the proficency to use statistical software and can judge the validity of results from this software based on back-of-the-envelope calculation.

Previous knowledge

  • Mathematical background (linear algebra, analysis)
  • Basic programming knowledge (Python or MATLAB)

Is included in these courses of study

Onderwijsleeractiviteiten

Design and Analysis of Experimentation (B-KUL-H02V8a)

3 ECTS : Practical 20 First termFirst term

Content

  • Data summary
  • Data visualization
  • Statistical hypothesis testing
  • Analysis of variance (ANOVA)
  • Design of experiments
  • Full and fractional factorial analysis
  • Regression
  • Response surface method

Course material

Knowledge clips and exercises will be provided. A copy of Engineering Statistics, 5 ed. by Montgomery, Runger, Hubele is required.

Format: more information

The course is designed as a flipped classroom. Knowledge clips are provided before the contact hours, contact hours are mainly used for exercises. Concepts are demonstrated on small examples on paper, software tools are used to work with larger datasets. Students define their own project to collect data which on which they apply the learned techniques.

Is also included in other courses

H9X48A : Design and Analysis of Experimentation

Evaluatieactiviteiten

Evaluation: Design and Analysis of Experimentation (B-KUL-H22V8a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

The evaluation consists of two parts: A project report (8/20) and a written exam (12/20).

Information about retaking exams

Students choose whether they want to repeat the project or not. The exam must be repeated.

ECTS Biofluid Mechanics (B-KUL-H03J2A)

3 ECTS English 23 First termFirst term
N. |  Verdonck Pascal (substitute)

Aims

Knowledge of transport phenomena.
Understanding of cardiac and vascular mechanics.
Introduction to cardiovascular modelling.
Overview of cardiovascular devices.
Insight in the design and clinical use of a cardiovascular device.

Previous knowledge

Preliminary terms
Thorough knowledge of physics, mechanics and mathematics, and basic knowledge of human physiology.
 

 

Is included in these courses of study

Onderwijsleeractiviteiten

Biofluid Mechanics (B-KUL-H03J2a)

3 ECTS : Lecture 23 First termFirst term
N. |  Verdonck Pascal (substitute)

Content

- Biofluid mechanics.
- Mechanics of the heart, blood vessels and circulation.
- Rheology of blood.
- Interaction between blood and blood vessels, lungs and gas exchange.
- Applications to artificial valves, artificial organs, vascular access, stents, auxiliary appliances, micro-electromechanical systems.
- Examples of numerical and experimental modeling as design tool for new cardiovascular devices.

Evaluatieactiviteiten

Evaluation: Biofluid Mechanics (B-KUL-H23J2a)

Type : Exam during the examination period
Description of evaluation : Oral

ECTS Biomaterials (B-KUL-H03U4A)

3 ECTS English 22 First termFirst term

Aims

At the end of this course, the student can explain the different properties (potentials and limits) of non-viable biomaterials such as polymers, ceramics and metallic alloys, which are used for biomedical devices in contact with living tissue. 

1. The student can evaluate the host environment and the function of a biomedical device and can define requirements for the biomaterials to be used in it. 

2. The student understands the physical, chemical and mechanical properties of materials and is able to evaluate which properties deserve special attention for a particular biomedical application. 

3. The student can explain how different manufacturing processes govern the material properties and understands why a particular material has been selected for a particular application. 

4. The student is able to understand why a medical practitioner selects a material and is capable to propose eventually a new material. 

Is included in these courses of study

Onderwijsleeractiviteiten

Biomaterials: Lecture (B-KUL-H03U4a)

3 ECTS : Lecture 22 First termFirst term

Content

The first part of the course will give an overview of the host environment and define the requirements for the biomaterials to be used in it. In the next part, the specific material classes (metals, ceramics, polymers and their composites) are discussed in more detail, with special attention to specific examples of biomaterials in every material class. The course concludes with a series of seminars given by medical specialists who will focus on biomaterials used in specific clinical applications, such as reconstructive surgery, cardiovascular surgery, orthopedic surgery, traumatology, abdominal surgery and dental applications. 

Course material

Study cost: More than 100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Lecture notes will be provided on Toledo. 

 

Recommended book (not mandatory): 
“Biomaterials Science: An Introduction to Materials in Medicine” by William Wagner, Shelly Sakiyama-Elbert, Guigen Zhang, Michael Yaszemski (eds), 4th edition, Elsevier, Published: 2020, ISBN: 978-0-12-374626-9. 

Format: more information

Guest lecture

Evaluatieactiviteiten

Evaluation: Biomaterials (B-KUL-H23U4a)

Type : Exam during the examination period
Description of evaluation : Written
Learning material : None

ECTS Theory of Elasticity and Plasticity (B-KUL-H03Y1A)

6 ECTS English 61 First termFirst term

Aims

The student knows the concepts and quantities from solid mechanics and understands the relations between them.  The student can write the full set of equations for an elastic and an elasto-plastic analysis of a body with an arbitrary shape in two- or three-dimensional space.  The student can interpret the states of stress and deformation.  The student knows the techniques for the transformation of analytical equations to algebraic equations as they are used in numerical simulation.  The student is able to make an analysis of a solid mechanics problem with an elastic material and simple geometry in two- or three-dimensional space, and with an elasto-plastic material in one- or two-dimensional space.

Previous knowledge

Basic knowledge of strength of materials

Identical courses

H07S3A: Elasticiteit en plasticiteit

Onderwijsleeractiviteiten

Theory of Elasticity and Plasticity: Lectures (B-KUL-H03Y1a)

4.2 ECTS : Lecture 30 First termFirst term

Content

The course has 2 main parts, which are subdivided in chapters :
part I : elasticity (11 lectures of 2 hours)

1. Mathematical concepts
Basic concepts from vector calculus; basic concepts from tensor calculus; coordinate transformations
2. Stress
Stress vector in a 3D continuum; stress tensor in a 3D continuum; stress tensor in coordinate transformations; principal stress and principal directions of stress tensor; Mohr’s circles for stresses; deviatoric stresses; octahedral shear stress
3. Kinematics and deformations
Lagrangian and Eulerian formulation of displacement and deformation; deformation gradient; physical interpretation of deformation tensor : change of length and change of angle; principal strain and principal directions of strain tensor; Mohr’s circles for strains; compatibility conditions
4. Conservation laws
Conservation of mass; conservation of impulse; conservation of moment of impulse
5. Constitutive equations
definitions of elastic material; generalised Hooke’s law; constitutive law for linear isotropic elastic material; constitutive law for hydrostatic and deviatoric stress components; physical interpretation of elastic constants; constitutive equations in a transformed coordinate system; material models for elastic materials : anisotropy, one plane of symmetry, orthotropy, transverse isotropy
6. Formulation of the 2D elasticity problem
Formulation of all governing equations; Navier’s equations; 2D stress states in cartesian coordinates : plane stress, plane strain, Airy stress function; 2D stress states in cylindrical coordinates : axisymmetry, strain-displacement relations, Airy stress function
7. Virtual work
Virtual displacements for rigid bodies, virtual work in virtual displacements for elastic bodies : virtual work of external and internal forces; virtual work theorem and equilibrium; virtual work in virtual forces for elastic bodies :  virtual work of external and internal forces; virtual work theorem and compatibility
8. Potential energy and energy methods
potentiale energy of external forces, elastic energy and energy density functionals; theorem of minimum potential energy: 1st variation and equilibrium, 2nd variation and stability; theorem of stationary complementary energy : compatibility; application of energy methods
9. Shells
kinematics of thin shells in transverse loading, Kirchoff hypothesis; stresses in thin plane shells, stress resultants in thin plane shells; equations of equilibrium : differential equation and boundary conditions; effective shear force
part II : plasticity (4 lectures of 2 hours)

1. Plasticity in one-dimensional stress states
Material models for uniaxial tension/compression; Bauschinger-effect; strain hardening
2. Yield criteria in two- and three-dimensional stress states
General expression of yield criterion; Haigh-Westergaard stress space; yield criteria voor ductile materials : Tresca, von Mises; fracture criteria voor brittle materials: Rankine, Mohr-Coulomb, Drucker-Prager
3. Deformations in plastic regime
Yield surface; incremental deformations; convexity of the yield surface; normality of plastic deformation increment to yield surface; plastic potential en flow rule

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Theory of Elasticity and Plasticity: Exercises (B-KUL-H03Y2a)

1.4 ECTS : Practical 23 First termFirst term

Content

solid mechanics problems in a two-dimensional space:
1. calculation of principal stresses, principal strains and principal directions of a 2D stress-strain state
2. calculation of the stress components that govern plasticity
3. calculation of stress states using Airy stress functions
solid mechanics problems in a three-dimensional space:
1. calculation of principal stresses, principal strains and principal directions of a 3D stress-strain state
2. calculation of the stress components that govern plasticity
3. axisymmetric problems
shells : calculation of shell deflection using Ritz approximation methods

pressure vessels in elasto-plastic regime:
1. calculation of elasto-plastic stress distribution
2. autofrettage

Theory of Elasticity and Plasticity: PC sessions using Finite Element Software (B-KUL-H03Y3a)

0.4 ECTS : Practical 8 First termFirst term

Content

There are 3 sessions :
- A truss and beam structure
- An elastic continuum with axisymmetry
- A plate problem

Course material

Course book

Evaluatieactiviteiten

Evaluation: Theory of Elasticity and Plasticity (B-KUL-H23Y1a)

Type : Exam during the examination period
Description of evaluation : Written, Oral
Learning material : List of formulas, None

Explanation

Every student receives three questions: one theory question, one exercise from the part on Elasticity and one exercise from the part on Plasticity. The theoretical question deals with a deduction which the student has to make independently (no reproduction from the course material). The exercises concern the complete elaboration of a structural mechanics problem with a simple geometry.
For the theory question and for one of the exercises the student prepares an answer in writing before an individual oral discussion takes place.  The third question is treated only in writing. Copies are collected four hours after the start of the session.
Each question has an equal weighting factor.  Rounding to an integer number is done using the standard rule, except when an insufficient mark is given for at least two questions, which leads to a round down operation.

ECTS Nuclear Energy: Basic Aspects (B-KUL-H04B5B)

4 ECTS English 30 First termFirst term

Aims

Providing the students with a proper understanding of and thorough insight into all important aspects of nuclear electricity production. The aim is to offer the students the (basic) physical and technical principles behind nuclear reactors and the safety issues that are related to it. Nuclear electricity generation will be placed in the frame of sustainable development.

Previous knowledge

The students need a thorough background in basic physics and thermodynamics. Knowledge of a course Technical Thermodynamics or Energy Conversion Machines and Systems is a useful extra source of knowledge.

Identical courses

H00S8B: Kernenergie: Basisaspecten

Is included in these courses of study

Onderwijsleeractiviteiten

Nuclear Energy: Basic Aspects (B-KUL-H0T34a)

4 ECTS : Lecture 30 First termFirst term

Content

- General introduction
- Is there still a future for nuclear energy?
- Situation of nuclear energy production in the entire generation system
- Is nuclear energy in accordance with sustainable development?
- Basic physical concepts for nuclear reactions and radioactivity
- Interaction of radiation with matter
- Dangers of ionizing radiation
- Interactions of neutrons with matter
- The phenomenon of nuclear fission. Burn-up, the concept of a chain reaction, critical mass
- The nuclear reactor as part of the nuclear power plant. New types of reactors
- Nuclear fuel cycle: upstream (enrichment) & downstream (reprocessing)
- Reactivity changes and reactor control
- Thermal hydraulics aspects of nuclear reactors
- Safety in nuclear power plants
- Radioactive waste management

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Handbooks:
- John R. Lamarsh, “Introduction to Nuclear Engineering, 2nd Ed.”, Addison Wesley, Reading, MA, 1983
- John R. Lamarsh & Anthony J. Baratta, “Introduction to Nuclear Engineering, 3rd Ed.”, Prentice Hall, Upper Saddle River, NJ, 2001.
Articles from specific literature will be made available.
Power point slides will be made available at TOLEDO.

Evaluatieactiviteiten

Evaluation: Nuclear Energy: Basic Aspects (B-KUL-H24B5b)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions, Closed questions
Learning material : Course material, List of formulas, Calculator, Reference work

Explanation

The exam consists of an oral examination but with written preparation.
Students get 20 minutes preparation time whereby they can prepare two general questions, open book. (They can use everything that they think may be useful.) To avoid communication with the outside world, no electronic means (PC, cell phone) may be used, however.
The oral examination, following the preparation, takes also 20 minutes. It is the aim during the oral examination to check whether the students have well understood the study material. The questions mostly asked during the exam are “Why is this such…, why does this curve deviate from that curve…, what is the meaning of the parameters in this equation,…, why is there a minus sign in this equation whereas I would expect a plus sign,……”, etc. The written preparation is for the students’ help; students do not get marks for what they have written down, since that has been copied anyway. So, all marks are obtained (or lost) during the oral exam.
Both questions are discussed, although there may be more emphasis on one than on the other. The distribution of marks depends on the way the two questions were addressed (in the range of 30%-70%). However, students are (sometimes severely) penalized if they say “stupid” things and certainly if they insist. E.g., a student who claims that it is the isotope U-238 that is easily fissile with thermal neutrons and that U-235 breeds Pu-239 (and who continues to repeat that that is the case) can never obtain more than 05/20, regardless of the rest of the exam.

ECTS Nuclear Energy: Deepening Insights (B-KUL-H04B5C)

3 ECTS English 20 First termFirst term Cannot be taken as part of an examination contract

Aims

To provide the students with a deeper understanding of the physical and technical basic principles of radioactivity, nuclear reactors and nuclear electricity generation. This encompasses the behavior of neutrons in reactors (diffusion theory and kinetic & dynamic behavior) as well as thermal-hydraulic considerations. Furthermore, attention is paid to the economic aspects of nuclear energy and its place in a future electric generation mix.

Previous knowledge

The students must have had a first course on Nuclear Engineering.

Beginvoorwaarden:
OPO “Nuclear Energy: Basic Aspects” (H04B5B - 4 sp)

Order of Enrolment



SIMULTANEOUS( H04B5B ) OR SIMULTANEOUS( H00S8B )


H04B5BH04B5B : Nuclear Energy: Basic Aspects
H00S8BH00S8B : Kernenergie: Basisaspecten

Identical courses

H00S8C: Kernenergie: Verdiepende inzichten

Is included in these courses of study

Onderwijsleeractiviteiten

Nuclear Energy: Deepening Insights (B-KUL-H0H03a)

3 ECTS : Lecture 20 First termFirst term

Content

- Supplements on the phenomenology of nuclear reactions and radioactivity
- Supplements on the biological effects of ionizing radiation
- Fourth generation nuclear reactors
- Principles of reactor theory (neutron behavior): diffusion
- Principles of kinetic and dynamic behavior of nuclear reactors
- Principles of nuclear thermal hydraulics
- Economic aspects of nuclear energy
- The role of nuclear energy in future electricity generation
- Resources and reserves of nuclear fuels and fertile material: uranium and thorium

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Slides + text book

Additional material on Toledo (slides, papers, chapter book …)

Format: more information

Standard lectures

Evaluatieactiviteiten

Evaluation: Nuclear Energy: Deepening Insights (B-KUL-H24B5c)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Multiple choice, Open questions, Closed questions
Learning material : Course material, Calculator, Reference work

ECTS Energy Economics (B-KUL-H04C4A)

3 ECTS English 20 Second termSecond term
Ooghe Erwin |  Morbée Joris (substitute)

Aims

This course aims to provide an understanding of the economic aspects of energy, while introducing or refreshing microeconomic concepts that can be of wider use.

It will help you to:
1. Understand and assess events on global energy markets
2. Make, or contribute to, business and policy decisions related to energy
3. Work as an engineer in multidisciplinary teams that involve economists

Previous knowledge

- Knowledge of basic microeconomics (market balance, supply and demand curves, perfect competition and monopoly, discounted cash flow analysis)
- Knowledge of calculus and mathematical optimisation

Is included in these courses of study

Onderwijsleeractiviteiten

Energy Economics (B-KUL-H04C4a)

3 ECTS : Lecture 20 Second termSecond term
Ooghe Erwin |  Morbée Joris (substitute)

Content

1. Introduction to environmental and resource economics
2. Economics of sustainability, climate change and international energy policy
3. Characteristics and modelling of primary energy markets (oil, natural gas, coal)
4. Economic aspects of electricity markets with and without renewable energy

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Core resources:
- Textbook "Energy Economics", Edition 2019, by Pepermans / Morbee / Ovaere / Proost
- Slides used for the lectures

Additional resources:
- Papers from scientific literature
- Statistics
- Background material from previous editions of the course
- Microeconomics textbook (for those without a sufficient background in economics)

Evaluatieactiviteiten

Evaluation: Energy Economics (B-KUL-H24C4a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, List of formulas, Calculator

Explanation

Open-book, written exam, in which students are requested to solve novel economic problems/questions related to the course material

ECTS Psychological and Social Aspects of the Management of Organisations (B-KUL-H04D9A)

3 ECTS English 20 Second termSecond term

Aims

This course is an introduction to the science of leadership and the development of leadership in organisations. Organisation psychology is the study of the how and what people think, feel and behave in organisations. Research in organisation psychology related different aspects of organisations, such as individual employees (for example personality, motivation, leadership, decisions), groups (for example characteristics, processes, cooperation) and organisation characteristics (for example job, design, culture, organisation change).Leaders play an important role in steering and influencing all of these aspects of the organisation. This course aims at understanding and gaining insights in the importance of leadership in organisations in the science of leadership. 

- Students will know what leadership entails and understand which domains in organizations it has an impact on. They will be able to describe the most relevant theories in leadership research.
- Students will be able to analyze a practical leadership case or problem and identify relevant theoretical markers. From this, they can distill tangible actions for leadership development.
- Students will prepare a presentation in group and use the book and scientific papers as documentation.
- Students will identify the strong and weak points of their abilities to cooperate and discuss teaching material. They will also gain experience in leading a discussion session.
- Students will reflect on their knowledge with regard to leadership (theories). In a paper, they will describe their personal and theoretical reflections.

Previous knowledge

No previous knowledge is required.

Is included in these courses of study

Onderwijsleeractiviteiten

Management of Organisations: Psychological and Social Aspects (B-KUL-H04D9a)

3 ECTS : Practical 20 Second termSecond term

Content

Organisation psychology is the study of the how and what people think, feel and behave in organisations. Research in organisation psychology related different aspects of organisations, such as individual employees (for example personality, motivation, leadership, decisions), groups (for example characteristics, processes, cooperation) and organisation characteristics (for example job, design, culture, organisation change). Leaders play an important role in steering and influencing all of these aspects of the organisation.

The following themes are covered
INDIVIDUAL
- Leadership and power
- Organisation justice and ethics
- Perceptions and development
- Motivation and personality
- Job satisfaction and commitment
- The role of emotions in organisations


GROUPS
- Groups and teams
- Decision making and negotiations


ORGANISATION

- Culture and structure of organisations

Course material

Baron and Judge. (2013). Behavior in Organizations. NJ: Pearson. 


Optional text:Yukl, G. (2006). Leadership in organizations. New Jersey: Pearson. 

Format: more information

The first part of class focuses on the presentation of the assignment by student groups. In the second part, we will discuss particular cases in small groups in which we will focus on a detailed understanding of the topic at hand as well as particular applications and practices. 

Evaluatieactiviteiten

Evaluation: Psychological and Social Aspects of the Management of Organisations (B-KUL-H24D9a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Paper/Project, Presentation, Self assessment/Peer assessment, Participation during contact hours
Type of questions : Open questions
Learning material : Course material

Explanation

Determination of grades
* The grades are determined by the course holder(s) (titularis), as announced via Toledo and the examination schedule. The result is computed and expressed as an integer on a scale of 20.
* The presentation is graded and counts for 50% of the final grade, the paper counts for 50% of the final grade.
* Peer assessment and cooperation during contact moments is used to determine a percentage of the group assignments.
Evaluation assignment
* Deadline: Term of deliverance and deadline will be determined by the lecturer (titularis) and communicated via Toledo.
* If the determined deadline for the paper was not respected, the grade will be reduced by 1 point/day, unless for a very serious reason the student asked the lecturer to make an arrangement for a new deadline.
* If the determined deadline was not respected for the peer assessment, the final grade of the course will be 0/20, unless for a very serious reason the student asked the lecturer to make an arrangement for a new deadline.
 

Information about retaking exams

Evaluation third examination period
* During an academic year, the student has 2 chances to participate to the exam: a first time during the first or second examination period, and a second time during the third examination period.
* The evaluation in the third examination period differs from the evaluation in the first examination period: In the third examination period, the grade is determined only by the paper.

ECTS Capita selecta ingenieurswetenschappen II.1. (Athens / Summer Course) (B-KUL-H04K9A)

3 studiepunten Nederlands 30 Eerste semesterEerste semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

 

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen II.1. (Athens / Summer Course) (B-KUL-H04K9a)

3 studiepunten : College 30 Eerste semesterEerste semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen II.1. (Athens / Summer Course) (B-KUL-H24K9a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.
 

Toelichting bij herkansen

 

ECTS Aerodynamics (B-KUL-H04O1A)

6 ECTS English 52 First termFirst term

Aims

The aim of the course is to provide physical insight into the fundamental principles of subsonic and supersonic aerodynamics.

Previous knowledge

For this course, good knowledge of fluid mechanics and thermodynamics is required.

Is included in these courses of study

Onderwijsleeractiviteiten

Aerodynamics: Lectures (B-KUL-H04I7a)

0.9 ECTS : Lecture 7 First termFirst term

Content

Subsonic incompressible flows: applications in vehicle technology: wake with vehicles, wind tunnel testing, longitudinal and lateral effects of aerodynamic forces, venturi effect
Subsonic incompressible flows: applications in thermotechnology: wind turbines, compressor cascades
Transient flows: basic principles and applications in internal flows.

Aerodynamics: Exercises (B-KUL-H04I8a)

0.1 ECTS : Practical 2 First termFirst term

Content

Exercises on transient flows.

Course material

Exercise book.

Aerodynamics: Lectures (B-KUL-H04O1a)

4.5 ECTS : Lecture 34 First termFirst term

Content

Introduction: properties of air, aerodynamic forces, typical variable ranges, influence of Re and Ma, pressure centre and aerodynamic centre.
Basic equations: classification of flows, integral formulations to determine drag coefficients, differental formulations: use of tensor notation and curve-linear coordinates.
Vorticity and circulation: evolution of thermodynamic variables through streamlines, transport of vorticity and circulation, origin of vorticity and circulation: the starting vortex
Subsonic incompressible flows around profiles: rotation-free flow, Kutta condition, influence of angle of attack, curvation and thickness, functioning of flaps, Joukowski's theorem, the vortex panel method
Subsonic incompressible flows around wings: downwash, tip vortices, elliptical wings, tapered wings and delta wings
Subsonic incompressible flows: applications in aviation: polar diagramme of an aeroplane, flight criteria, manoeuvres
Compressible flows: perturbation theory, Prandtl-Glauert's rule
Supersonic theory: Prandtl-Meyer expansion, normal shocks, oblique shocks, visualization, boundary layer interactions, the area rule
Viscous flows: energy dissipation, boundary layers, hypersonic comparisons
Turbulence: instability of a flow with rotation, primary and secondary instabilities, transition, statistic approach in turbulence

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

J.D. Anderson, Fundamentals of Aerodynamics, McGraw-Hill. 

Format: more information

Lecture.

Is also included in other courses

H04O1B : Aerodynamics

Aerodynamics: Exercises (B-KUL-H04O2a)

0.5 ECTS : Practical 9 First termFirst term

Content

Exercises on:
- subsonic aerodynamics
- supersonic aerodynamics

Course material

Exercise book.

Is also included in other courses

H04O1B : Aerodynamics

Evaluatieactiviteiten

Evaluation: Aerodynamics (B-KUL-H24O1a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

The exam consists of an overview question on the theory and  exercises

 

ECTS Aerodynamics (B-KUL-H04O1B)

5 ECTS English 43 First termFirst term
Baelmans Tine (coordinator) |  Baelmans Tine |  Dekeyser Wouter

Previous knowledge

For this course, good knowledge of fluid mechanics and thermodynamics is required.

Is included in these courses of study

Onderwijsleeractiviteiten

Aerodynamics: Lectures (B-KUL-H04O1a)

4.5 ECTS : Lecture 34 First termFirst term

Content

Introduction: properties of air, aerodynamic forces, typical variable ranges, influence of Re and Ma, pressure centre and aerodynamic centre.
Basic equations: classification of flows, integral formulations to determine drag coefficients, differental formulations: use of tensor notation and curve-linear coordinates.
Vorticity and circulation: evolution of thermodynamic variables through streamlines, transport of vorticity and circulation, origin of vorticity and circulation: the starting vortex
Subsonic incompressible flows around profiles: rotation-free flow, Kutta condition, influence of angle of attack, curvation and thickness, functioning of flaps, Joukowski's theorem, the vortex panel method
Subsonic incompressible flows around wings: downwash, tip vortices, elliptical wings, tapered wings and delta wings
Subsonic incompressible flows: applications in aviation: polar diagramme of an aeroplane, flight criteria, manoeuvres
Compressible flows: perturbation theory, Prandtl-Glauert's rule
Supersonic theory: Prandtl-Meyer expansion, normal shocks, oblique shocks, visualization, boundary layer interactions, the area rule
Viscous flows: energy dissipation, boundary layers, hypersonic comparisons
Turbulence: instability of a flow with rotation, primary and secondary instabilities, transition, statistic approach in turbulence

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

J.D. Anderson, Fundamentals of Aerodynamics, McGraw-Hill. 

Format: more information

Lecture.

Is also included in other courses

H04O1A : Aerodynamics

Aerodynamics: Exercises (B-KUL-H04O2a)

0.5 ECTS : Practical 9 First termFirst term

Content

Exercises on:
- subsonic aerodynamics
- supersonic aerodynamics

Course material

Exercise book.

Is also included in other courses

H04O1A : Aerodynamics

Evaluatieactiviteiten

Evaluation: Aerodynamics (B-KUL-H24O1b)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

The exam consists of an overview question on the theory (oral examination) and a number of exercises  (written).

 

ECTS Bedrijfsstage: Werktuigkunde / Industrial Internship: Mechanical Engineering (B-KUL-H04O7A)

3 studiepunten Nederlands 60 Eerste semesterEerste semester Uitgesloten voor examencontract Uitgesloten voor creditcontract

Doelstellingen

De student kan na de korte bedrijfservaring een afdeling van een bedrijf situeren binnen het groter geheel van het bedrijf, het bedrijf binnen zijn sector en in het geheel van het industrieel weefsel. De student kan na de bedrijfservaring zich een beeld vormen van het beroep van een beginnend ingenieur  binnen een bedrijf en hoe de opdrachten- en communicatiestroom binnen een bedrijf verlopen.
De student kan over de uitgevoerde taken schriftelijk en  mondeling verslag uitbrengen.
De student kan reflecteren over zijn eigen functioneren als stagenemer binnen het bedrijf

Begintermen

Voorkennis: afwerken van een Bachelor Ingenieurswetenschappen: werktuigkunde.
Voor-attitude: een zekere assertiviteit om contacten te leggen en te onderhandelen met het bedrijf.

Onderwijsleeractiviteiten

Bedrijfsstage: Werktuigkunde / Industrial Internship: Mechanical Engineering (B-KUL-H04O7a)

3 studiepunten : Stage 60 Eerste semesterEerste semester

Inhoud

De bedrijfservaring omvat een werkverblijf met een minimale duur van 4 weken in een bedrijf gedurende de maanden juli of augustus, tijdens de welke de student activiteiten zal uitoefenen met de bedoeling te voldoen aan de hierboven gestelde doelstellingen. 
De stagenemer zal achteraf schriftelijk en mondeling rapporteren.

Studiemateriaal

Informatie op: http://www.mech.kuleuven.be/studenten/stages
 

Evaluatieactiviteiten

Evaluatie: Bedrijfsstage: Werktuigkunde / Industrial Internship: Mechanical Engineering (B-KUL-H24O7a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Leermateriaal : Geen

Toelichting

De evaluatie gebeurt aan de hand van een schriftelijke en mondelinge rapportering in overeenstemming met volgende richtlijnen:
Na de bedrijfservaring maakt de student (in overleg met het bedrijf) onmiddellijk een rapport op. Dit wordt aan de stagecoördinator bezorgd (2 of 3 exemplaren) begin oktober. De stagecoördinator bezorgt deze rapporten aan telkens 2 of 3 juryleden (ZAP of postdoc).
De student stelt mondeling kort zijn bedrijfservaring voor (15min) gevolgd door wat vragen en opmerkingen (5min). De jury beoordeelt de bedrijfservaring.


Het stagerapport bestaat uit drie delen:
·         DEEL A: situeert het bedrijf: het (hoofd)product van het bedrijf, de plaats van het bedrijf in zijn sector en de werking binnen het bedrijf (bv. hiërarchie, informatielijnen, ...)
·         DEEL B: start met een korte, precieze beschrijving van de opdracht(en) en plaatst dit in het geheel van het bedrijf. Daarna volgt een wat uitgebreidere beschrijving samen met de eventuele resultaten. De student geeft steeds aan wat zijn/haar taak precies geweest is. Dat deel wordt afgesloten met de belangrijkste besluiten: voornamelijk de behaalde resultaten.
·         DEEL C: het reflectiegedeelte: het geeft de ervaring van de student weer. Deze bevat onder andere best volgende punten:
              o   Hoe ervaarde de student de organisatie, de informatie- en opdrachtenstromen binnen het bedrijf/afdeling ?
              o   Hoe beoordeelt de student zijn/haar eigen functioneren in het bedrijf qua motivatie, communicatievaardigheden, werken in groep, inzet, zin voor initiatief, leiding geven, ... ?
              o   Welke tot dan toe gevolgde opleidingsonderdelen ervaart de student als relevant voor de uitvoering van de stage. ?
 
Deze verslagen blijven kort: 15 tot 20 bladzijden (+ eventueel minder essentiële figuren en tabellen in bijlage). De student maakt bij voorbaat duidelijke afspraken met het bedrijf, o.a. in verband met eventuele confidentialiteit.
De jury oordeelt in hoeverre aan de doelstellingen van de bedrijfservaring is voldaan, waarin eigen inbreng, aanpak, opgedane kennis en ervaring een rol spelen. De jury oordeelt ook over de stijl, volledigheid, taal, duidelijkheid en structuur van het schriftelijke verslag en over de taal, structuur, vlotheid, synthese van het mondelinge verslag. 

Toelichting bij herkansen

Indien de bedrijfservaring als onvoldoende wordt beoordeeld, zal de student de verslaggeving moeten uitbreiden/verbeteren voor een evaluatie in de 3e examenperiode. Het stageverblijf zelf kan niet hernomen worden.
 

ECTS Embedded Control Systems (B-KUL-H04P5A)

3 ECTS English 40 Second termSecond term Cannot be taken as part of an examination contract

Aims

This course introduces students to the software and hardware aspects of embedded and realtime computer-controlled machine tools, robots, vehicles and instruments, in the specific context of mechatronic systems-of-systems. Students will learn to fundamental concepts and techniques, and to understand how to apply them in embedded control systems, in order to later, in their professional live, be able to brainstorm with domain specialists. The students should learn to think and act as the "Chief Technical Officer" of an innovative technical company, responsible for the technical vision of the new embedded control products of the company. They have to apply the concepts and techniques of the lectures in the design of an innovative embedded control system.

 

Previous knowledge

Bachelor level of mechanical dynamical systems. Passive knowledge of a higher programming language, and of computer infrastructure.

Order of Enrolment



SIMULTANEOUS(H04X3B) OR SIMULTANEOUS(H00S4A) OR SIMULTANEOUS(H00S3A) OR SIMULTANEOUS(H04X3A)


H04X3BH04X3B : Systems and Control Theory
H00S4AH00S4A : Systeemanalyse en regeltechniek
H00S3AH00S3A : Regeltechniek
H04X3AH04X3A : Control Theory


Identical courses

H00R9A: Embedded Control Systems

Onderwijsleeractiviteiten

Embedded Control Systems (B-KUL-H04P5a)

1.6 ECTS : Lecture 12 Second termSecond term

Content

Embedded Control Systems has several objectives, some non-technical:

Objective 1

This course is an introduction to embedded control systems, with an emphasis on the smart moving machines of the next generation, i.e., robots, cars, trucks, machine tools, airplanes, satellites, combine harvesters, etc. The objective is to introduce the students to the roles and responsibilities of innovation project engineers in companies that design and develop such embedded control systems. Actively striving to introduce “innovation” in a company is a very important attitude that the course wants to stimulate, with the design deliverable as the main outcome.

Objective 2

Within the very broad context of “embedded systems”, the course puts strong emphasis on:

  • the systems-level thinking: every part of the system is selected and tuned for the goals of the whole system.
  • innovative design: comparison of possible alternatives should be done on the basis of informed and motivated argumentations, and each design should clearly identify why it is “better” than what exists already.
  • design automation: what standards and tools exist to support the design in large-scale projects, in which no single person can keep the overview and control of the whole design process.

Objective 3

The concrete contents of the course are detailed during the first lectures, in dialogue with the students. Indeed, students are expected to have a strong influence on these concrete course contents, since this is a perfect example of how, in their future professional live, they will be responsible for their company's initiatives, innovation and realisations!

A major aspect of this responsibility is that the students must make sure that they learn effectively and sufficiently, by pro-actively engaging in a constructively critical interaction with the teaching team and with their peers. In other words, learning is an continuous and conscious activity, so certainly not something one postpones until the examination period…

Learning targets

The course targets the following “ACQA indicators” used to describe learning objectives that courses should try to focus on and optimize (Source: Criteria voor Academische Bachelor en Master Curricula, P.M.M. Rullmann, R.A. van Santen, W.H.M. Zijm, 2005):

  • Skilled in research: students are taught how to do research, that is, how to explore and structure new domains of knowledge in a systematic and goal-oriented way.
  • Scientific approach: the learning takes place via the formulation and motivation of hypotheses and models to explain the working of the “world”, and the consequent corroboration or refutation of those hypotheses via confrontation with the factual reality and/or the input from more experienced peers.
  • Takes temporal and societal context into account: knowledge only has added value in specific application contexts, and that value is often determined not only by technical properties but also by legal, ethical and societal values, norms and beliefs.

Course material

Het opleidingsonderdeel heeft een eigen website en mailinglijst

Embedded Control Systems: Project Work (B-KUL-H04P6a)

1.4 ECTS : Assignment 28 Second termSecond term

Content

To be defined by students and lecturer. The idea is to think about the design of a mechatronic system-of-systems that could become reality in five to ten years. Students are expected to come up with concrete descriptions of innovative designs, with a core contribution on the technical mechatronic aspects of that innovation, and with a SWOT analysis of their design, including at least two Milestones with measurable benchmarks.

Course material

Lecture notes provided during oral interaction sessions.

Format: more information

The students can have some interactive discussion sessions with the lecturer about their individual project, but the course's mailinglist is the major instrument: this reflects the state-of-the-practice in the domain of embedded control systems, and also introduces the students to a (for them) still unexplored modern ICT tool.

Evaluatieactiviteiten

Evaluation: Embedded Control Systems (B-KUL-H24P5a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Process evaluation, Skills test, Take-Home
Type of questions : Open questions
Learning material : Course material, Reference work

Explanation

The lectures gives a set of small homeworks for each of the course's main topics.
The students explore autonomously the capabilities of modern toolchains for embedded control system software, on the basis of a set of assignments of growing complexity. Discussion possibilities about the assignments and about the innovation project exist via the mailinglist, and these are strongly stimulated.
The students explain their design project in interactive sessions with the lecturer (also mainly taking place via the course's mailinglist), who gives immediate feedback for improvements.

ECTS Integrated Project (B-KUL-H04P9A)

6 ECTS English 120 Second termSecond term Cannot be taken as part of an examination contract

Aims

The objective of this course is to acquire the following competencies with limited guidance:

  • integration of the contents of the courses from the core training mechanics and some cluster-specific courses;
  • application of design methodologies in practical assignments;
  • ability to work in group and to give oral and written reports on technical and scientific work.

Order of Enrolment



SIMULTANEOUS(H04S6A) AND SIMULTANEOUS(H04U3A) AND (SIMULTANEOUS(H04X3A) OR SIMULTANEOUS(H04X3B)) AND SIMULTANEOUS(H04X7A) AND (SIMULTANEOUS(H0H51A) OR SIMULTANEOUS(H03Y1A)) OR SIMULTANEOUS(H00R7A) OR (SIMULTANEOUS(H00S3A) OR SIMULTANEOUS(H00S4A)) OR SIMULTANEOUS(H07S3A) OR SIMULTANEOUS(H00R8A) OR SIMULTANEOUS(H00S2A)


H04S6AH04S6A : Mechanical Drive Systems
H04U3AH04U3A : Numerical Modelling in Mechanical Engineering
H04X3AH04X3A : Control Theory
H04X3BH04X3B : Systems and Control Theory
H04X7AH04X7A : Sensors and Measurements Systems
H0H51AH0H51A : Elasticiteits- en plasticiteitsleer
H03Y1AH03Y1A : Theory of Elasticity and Plasticity
H00R7AH00R7A : Mechanische aandrijvingen
H00S3AH00S3A : Regeltechniek
H00S4AH00S4A : Systeemanalyse en regeltechniek
H07S3AH07S3A : Elasticiteit en plasticiteit
H00R8AH00R8A : Numerieke modellering in de mechanica
H00S2AH00S2A : Sensoren en meetsystemen

Identical courses

H00S1A: Geïntegreerd practicum

Onderwijsleeractiviteiten

Integrated Project (B-KUL-H04P9a)

6 ECTS : Assignment 120 Second termSecond term

Content

This course consists of one or more cross-curricular activities, with sufficient depth with respect to the core mechanical courses, a partial option specific interpretation is also included. The course covers aspects of the correct use of analytical/numerical techniques, independent information acquisition with critical analysis, and synthesis. Furthermore, a check with reality is in most cases involved. The assignment may or may not happen in cooperation with a company.

Course material

Available on the teaching platform

Format: more information

The sessions include a limited number of general seminars on CAD/CAE and a major project.
The seminars are organized at the beginning of the semester. In order to broaden the student’s view on the design problem, the seminars interpreted more broadly than is strictly necessary for carrying out a project.
 

The definition of a project is conducted in consultation with the industry and with the supervisors. The project runs over the entire semester. The exact dates are available in the planning. A project is basically carried out by a group of typically two or three students. The choice of the composition of the group is free.
 

There is an intermediate and a final presentation.
The end result is a written report, possibly a prototype.

Evaluatieactiviteiten

Evaluation: Integrated Project (B-KUL-H24P9a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Report, Presentation
Type of questions : Open questions
Learning material : Computer

Explanation

The grade is based on the technical quality of the development and/or the scientific merit of the analysis.
The quality of both the oral and the written part of reporting are taken into account.

Information about retaking exams

Given the specific evaluation form, there is no alternative exam over the entire examination contents  organized during the Sept. examination period for those students who were not active in the course of the academic year or who had a  limited participation. For students who have a sufficient contribution during the year, it will be checked how a replacement for the examination can be organized.

ECTS Physics of Nuclear Reactors (B-KUL-H04Q0A)

6 ECTS English 45 Not organisedNot organised
N.

Aims

Thoroughly understanding the physical phenomena in a nuclear reactor. After following this course, the students should be able to calculate simple reactor geometries and to interpret them physically to determine the conditions for composition, geometry and neutron population for critical reactors as well as for transient phenomena. 

Previous knowledge

Students possess the knowledge and skills matching the final terms of the Bachelor program of Engineering. A sufficient mathematical and physics background is presupposed, especially with critical analysis and interpretation abilities. Students have the skill to translate physical problems into mathematical models (calculations with the appropriate boundary conditions) and to solve them afterwards. The student also has an active knowledge of the principles of Nuclear energy.
 
Preliminary conditions: In principle, this course is open to all Master students with a Bachelor in Engineering (except for Architecture), under the condition that they have followed the course 'Nuclear Energy' or an equivalent. Thorough knowledge of mathematical techniques, such as solving simple and partial differential equations and good physical insight on diffusion phenomena are an advantage. 

Is included in these courses of study

Onderwijsleeractiviteiten

Physics of Nuclear Reactors (B-KUL-H04Q0a)

6 ECTS : Lecture 45 Not organisedNot organised
N.

Content

- Elementary elements of nuclear physics
- Interaction of neutrons with matter
- The physics of nuclear fission
- Neutrons chain reaction systems
- Diffusion theory of neutrons
- Neutron slowing down without absorption
- Neutron slowing down with absorption and fission
- Low-energetic and thermal neutrons
- Fermi theory of a bare thermal reactor
- Reactors with multiple regions, group diffusion theory
- Reactor kinetics- Changes in reactivity 

Course material

- Text book: J.R. Lamarsh, 'Nuclear Reactor Theory', Addison Wesley, Reading, MA, 1972.- Copies of the transparancies of the teacher. 

Evaluatieactiviteiten

Evaluation: Physics of Nuclear Reactors (B-KUL-H24Q0a)

Type : Exam during the examination period
Description of evaluation : Oral, Written, Practical exam
Type of questions : Open questions, Closed questions
Learning material : Course material, List of formulas, Calculator, Computer, Reference work

Explanation

1) Exercises (during the semester) open book as homework.

2) During the exam session, oral exam (with written preparation) about theory with perhaps oral exercises; open book preparation + Presentation of a selected scientific paper: present written preparation followed by oral discussion

ECTS Advanced Thermodynamics and Plasma Physics (B-KUL-H04Q1B)

6 ECTS English 23 Second termSecond term
Dekeyser Wouter (coordinator) |  Baelmans Tine

Aims

To provide the students with in-depth insight of kinetic theory and statistical thermodynamics. 

Previous knowledge

The course is open to students with a thorough knowledge of thermal engineering, such as technical thermodynamics, heat transfer, and fluid mechanics.

Is included in these courses of study

Onderwijsleeractiviteiten

Advanced Thermodynamics and Plasma Physics (B-KUL-H04Q1a)

6 ECTS : Lecture 23 Second termSecond term

Content

Part I : Kinetic theory and statistical thermodynamics applied to fluid mechanics

  • Fluid Equations
  • Simple Kinetic Theoretical Estimates
  • The Distribution Functions & the Transport Equation
  • Collisional Processes
  • Moments of the Transport Equation
  • The Chapman-Enskog Method
  • Grad's 13-Moment Equation

Part II : Application of kinetic theory and statistical thermodynamics to plasmas

  • Charged particles and single particle motion
  • Behavior of a plasma in interaction with electric and magnetic fields (Coulomb collisions, Debye shielding, quasi-neutrality)
  • Moments of the transport equations and plasma transport models (classical, neoclassical, anomalous, collisional dominated interaction with neutral particles)
  • MHD equations and stability in magnetic confinement
  • Applications in nuclear fusion particle and power exhaust

Course material

Lecture notes by the instructor and excerpts of textbooks.

Evaluatieactiviteiten

Evaluation: Advanced Thermodynamics and Plasma Physics (B-KUL-H24Q1b)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions, Closed questions
Learning material : Course material

Explanation

Two comprehensive questions to test the overall insight in this complicated material of Part I. 30 minutes open book preparation, followed by 30 min oral examination.

One or two comprehensive questions to test the overall insight in the material of Part II. 30 minutes open book preparation, followed by 30 min oral examination.

ECTS Advanced Techniques for Vibro-acoustic Measurement and Analysis (B-KUL-H04Q4A)

3 ECTS English 20 First termFirst term

Aims

The student acquires knowledge on recent vibro-acoustic measurement and analysis techniques, with special attention for automotive NVH problems (Noise and Vibration Harshness) . The student is capable of selecting the optimal technique for a given problem and of motivating his choice, he has a clear view on the weaknesses and strengths of the different techniques and is capable of critically interpreting the results. He is aware of the relevant scientific publications in this field and is capable of reviewing a related scientific paper

*

cfr OPO

Previous knowledge

Machine design, Mechanical Vibrations, Measurement systems, Signal processing, control theory. 

Is included in these courses of study

Onderwijsleeractiviteiten

Advanced Techniques for Vibro-acoustic Measurement and Analysis (B-KUL-H04Q4a)

3 ECTS : Lecture 20 First termFirst term

Content

Lectures are given on the following topics

-          Acoustic Modal Analysis
-          Measurement of acoustic quantities (sound power, acoutic intensity, acoustic impedance)
-          Digital signal processing for acoustic analysis
-          Time-frequency analysis (RPM and order tracking, SFFT, wavelet analysis)
-          Transfer path analysis, panel contribution analysis
-          Subjective noise evaluation
-          Active Noise and Vibration Control
-          Workshop: Vibro acoustic measurements at LMS International 

Course material

hoorcolleges aangevuld met bedrijfsbezoek aan spin-of LMS.
 
 

Format: more information

Lectures, literature search, discussion forum, workshop at to LMS International 
 

Evaluatieactiviteiten

Evaluation: Advanced Techniques for Vibro-acoustic Measurement and Analysis (B-KUL-H24Q4a)

Type : Exam during the examination period
Description of evaluation : Oral, Written
Type of questions : Open questions
Learning material : Calculator, Course material

Explanation

  • Open book exam (including calculator) and discussion on the exam paper (15 min)
  • Discussion of a scientific paper (15 min)

ECTS Advanced Model Based Control (B-KUL-H04Q7A)

6 ECTS English 59 First termFirst term Cannot be taken as part of an examination contract

Aims

The student is able to perform frequency domain identification experiments and to critically evaluate the obtained results, and this using available Matlab-code.
The student is able to design advanced feedback and feedforward controllers based on performance and robustness specifications in time and/or frequency domain, estimates of system model uncertainty, and this using available Matlab-code.
The student is able to apply these methods on a mechatronic single-input motion system. The student is able to interpret, evaluate and present the obtained results, and motivate the choices made during the design.

Previous knowledge

Linear systems theory and the fundamentals of linear control theory form the starting point of the course contents. Thus, a thorough knowledge of and insight in these matters are an important prerequisites for students who wish to add this course to their program. The design methodologies that are covered in the course rely on advanced numerical optimization techniques, which software and routines are provided for in MATLAB. Students are therefore assumed to be familiar with the MATLAB programming language.

Order of Enrolment



FLEXIBLE (H00S3A) OR FLEXIBLE (H00S4A) OR FLEXIBLE (H04X3A) OR FLEXIBLE (H04X3B)


H00S3AH00S3A : Regeltechniek
H00S4AH00S4A : Systeemanalyse en regeltechniek
H04X3AH04X3A : Control Theory
H04X3BH04X3B : Systems and Control Theory

Is included in these courses of study

Onderwijsleeractiviteiten

Advanced Model Based Control: Theory Lecture (B-KUL-H04Q7a)

5.28 ECTS : Lecture 39 First termFirst term

Content

1. Introduction to system identification, differences between time and frequency domain identification, properties of parameter estimation methods, relation between different approaches

2. Frequency identification of linear time invariant systems:
• design of excitation signals for frequency response function measurement
• estimation of frequency response functions (FRFs)
• deterministic and stochastic frequency domain identification methods (parametric models)
• model validation techniques
• estimation of the influence of nonlinear distortions on accuracy of FRF measurements

3. Advanced control design
• differences between collocated and non-collocated control
• basics of model-inversion based feedforward control design
• robust loopshaping feedback control design, mixed-sensitivity H-infinity control design
• introduction to iterative learning control design

Course material

• course notes on identification, available at VTK
• pdf-files of the slides used during lectures, available on Toledo
• pdf-files of articles and book chapters providing more information on control related part of the course, available on Toledo
• Matlab files for frequency domain identification, trajectory generation and H-infinity mixed-sensitivity feedback control design, available on Toledo
• Feedback control of dynamic systems, G.F. Franklin, J.D. Powell, A. Emami-Naeini, Any Edition, Addison-Wesley

Format: more information

The students critically analyse the different identification, estimation and control design techniques presented during the lectures, based on the available course material including scientific articles and text book material: analyse properties, advantages and disadvantages of different techniques, analyse information/data required for application and validation, analyse relations and differences between techniques, their application and objectives.

Advanced Model Based Control: Practice (B-KUL-H04Q8a)

0.72 ECTS : Assignment 20 First termFirst term

Content

The students do  a system identification and control design research project in groups of 2 or 3, on a simplified mechatronic single-input motion system. This project includes: derivation of a dynamic system model, system identification (experiment design, estimation of frequency response function, estimation of parametric system model and model uncertainty, model validation), perform control design according to project specification, critically validate and compare controllers in simulation and experimentally. Prepare scientific presentation of this research project.
The students do an individual assignment, which is a mixed sensitivity H-infinity control design in Matlab for a given system model, model uncertainty and closed-loop specifications, critically validate the results and prepare a short (10 minutes) scientific presentation.

Format: more information

The students will master the techniques learned to make design decisions and critically evaluate the obtained results, both individually and in groups.

Evaluatieactiviteiten

Evaluation: Advanced Model Based Control (B-KUL-H24Q7a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Presentation, Participation during contact hours
Type of questions : Open questions
Learning material : Course material

Explanation

The students present the results of their individual assignment and of their group research project. During these presentations, the students are questioned about the results. Important elements of the evaluation are: knowledge of the course material, commitment of the students during the project implementation, critical analysis of results, critical attitude of the student, quality of presentation, response of the students during discussion.
The students must (i) be able to motivate the approach they followed/decisions they made during the implementation of the project, (ii) understand the different methods they applied, (iii) be able to critically analyse and explain the obtained results. The individual assignment and project assignment respectively count for 25% and 75% of the total score.

ECTS Industriële stage: Werktuigkunde / Industrial Internship: Mechanical Engineering (B-KUL-H04Q9A)

6 studiepunten Nederlands 120 Eerste semesterEerste semester Uitgesloten voor examencontract Uitgesloten voor creditcontract

Doelstellingen

De student kan na de stage een afdeling van een bedrijf situeren binnen het groter geheel van het bedrijf, het bedrijf binnen zijn sector en in het geheel van het industrieel weefsel. De student kan na de stage inschatten wat het beroep van een beginnend ingenieur omvat binnen een bedrijf en hoe de opdrachten- en communicatiestroom binnen een bedrijf verlopen.
De student kan een project in overleg met anderen plannen, bijsturen en uitvoeren en daarover schriftelijk en  mondeling verslag uitbrengen.
De student kan reflecteren over zijn eigen functioneren als stagenemer binnen het bedrijf

Begintermen

Voorkennis: afwerken van een Bachelor Ingenieurswetenschappen: werktuigkunde.
Voor-attitude: een zekere assertiviteit om contacten te leggen en te onderhandelen met het bedrijf.

Onderwijsleeractiviteiten

Industriële stage: Werktuigkunde / Industrial Internship: Mechanical Engineering (B-KUL-H04Q9a)

6 studiepunten : Stage 120 Eerste semesterEerste semester

Inhoud

De stage omvat een werkverblijf met een minimale duur van 6 weken in een bedrijf gedurende de maanden juli of augustus, tijdens de welke de opdracht beschreven in een bij voorbaat duidelijk uitgewerkt stageplan wordt uitgevoerd. Gedurende deze periode zal de student deze activiteiten uitoefenen met de bedoeling te voldoen aan de hierboven gestelde doelstellingen. Afhankelijk van de duur van de verblijfperiode kan het nodig zijn dat de stagenemer zich bij voorbaat reeds moet inwerken in het project. De student houdt een logboek bij dat na een 10 tot 14 dagen (in samenvatting) wordt voorgelegd aan de stagecoördinator.
De stagenemer zal achteraf schriftelijk en mondeling rapporteren.

Studiemateriaal

Informatie op: http://www.mech.kuleuven.be/studenten/stages

Evaluatieactiviteiten

Evaluatie: Industriële stage: Werktuigkunde / Industrial Internship: Mechanical Engineering (B-KUL-H24Q9a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Leermateriaal : Geen

Toelichting

De evaluatie gebeurt aan de hand van een schriftelijke en mondelinge stagerapportering in overeenstemming met volgende richtlijnen:
Na de stage maakt de student (in overleg met het bedrijf) onmiddellijk een rapport op. Dit wordt aan de stagecoördinator bezorgd (3 exemplaren) begin oktober. De stagecoördinator bezorgt deze rapporten aan telkens 3 juryleden (ZAP of postdoc).
Daarna stelt de student mondeling kort zijn stage voor (20min) gevolgd door een grondige discussie (10min). De jury beoordeelt de stage.


Het stagerapport bestaat uit een drie delen:


•         DEEL A: situeert het bedrijf: het (hoofd)product van het bedrijf, de plaats van het bedrijf in zijn sector en de werking binnen het bedrijf (bv. hiërarchie, informatielijnen, ...)


•         DEEL B: start met een korte, precieze beschrijving van de stageopdracht en plaatst dit in het geheel van het bedrijf. Daarna volgt een wat uitgebreidere beschrijving samen met de eventuele resultaten, getoest aan het opgemaakt stageplan. De student geeft steeds aan wat zijn/haar taak precies geweest is. Dat deel wordt afgesloten met de belangrijkste besluiten, voornamelijk de behaalde resultaten.


•         DEEL C: het reflectiegedeelte: het geeft de ervaring van de student weer. Deze bevat onder andere best volgende punten:
            o   Hoe ervaarde de student de organisatie, de informatie- en opdrachtenstromen binnen het bedrijf/afdeling ?
            o   Hoe beoordeelt de student zijn/haar eigen functioneren in het bedrijf qua motivatie, communicatievaardigheden, werken in groep, inzet, zin voor initiatief, leiding geven, ... ?
            o   Welke tot dan toe gevolgde opleidingsonderdelen ervaart de student als relevant voor de uitvoering van de stage. ?

Deze verslagen blijven kort: 25 tot 30 bladzijden (+ eventueel minder essentiële figuren en tabellen in bijlage). De student maakt bij voorbaat duidelijke afspraken met het bedrijf, o.a. in verband met eventuele confidentialiteit.
De jury oordeelt in hoeverre aan de doelstellingen van de stage is voldaan, waarin eigen inbreng, aanpak, opgedane kennis en ervaring een rol spelen. De jury oordeelt ook over de stijl, volledigheid, taal, duidelijkheid en structuur van het schriftelijke verslag en over de taal, structuur, vlotheid, synthese van het mondelinge verslag.
 

Toelichting bij herkansen

Indien de bedrijfservaring als onvoldoende wordt beoordeeld, zal de student de verslaggeving moeten uitbreiden/verbeteren voor een evaluatie in de 3e examenperiode. Het stageverblijf zelf kan niet hernomen worden.

ECTS Mechanical Drive Systems (B-KUL-H04S6A)

6 ECTS English 53 First termFirst term

Aims

Introducing the student into the most commonly used mechanical drive systems: combustion motors, pneumatic and hydraulic drives.
The student should be able to describe the concepts and thinking patterns around mechanical drives (reproduction). He/she should acquire sufficient insight  to be able to conduct a conversation with specialists, be able to consult and understand scientific and technical literature on the matter, attend scientific symposia (acquiring insight). He/she should acquire a critical mindset to usefully apply the acquired knowledge and to estimate future evolutions (reflection).

The student can solve simple pneumatic and hydraulic automation problems autonomously by applying the methods and concepts presented during the lectures.

The student can describe the major components of pneumatic and hydraulic drive systems and their applications in industry. The student can select components and can solve simple industrial problems (automation as well as servo problems) with (electro)pneumatical and (electro)hydraulic technology.

Previous knowledge

Classical thermodynamics, heat transfer, theory of flows, kinematics and dynamics of mechanisms, principles of machine construction.
Elementary knowledge of electricity, dynamics, vibrations, systems theory, machine elements and control technology is required.
Prerequisites: H01N2A: Energy conversion machines and systems

Identical courses

H00R7A: Mechanische aandrijvingen

Onderwijsleeractiviteiten

Pneumatic and Hydraulic Drive Systems: Exercises (B-KUL-H04S0a)

0.27 ECTS : Practical 5 First termFirst term

Content

The student works on a pneumatic and an hydraulic problem. A typical example is the pneumatical scheme of an industrial machine producing wooden dowels according to the different methods and convert it into pneumatic technology. Furthermore, the student has to dimension the used pistons and to calculate the air usage.
Another typical example is the analysis of a servo-hydraulic system.

Course material

Texts with the description of the situation and description of the exercises made available on the electronic learning platform.

Format: more information

The setting is a guided exercise in a group of about 20 students.During these exercises Matlab is used as an engineering tool. Demo's of components and systems are given.

Combustion Engines: Lectures (B-KUL-H04S7a)

3.3 ECTS : Lecture 27 First termFirst term

Content

This course is divided in two parts:

  • The first part of the course gives a modern approach to the study of internal combustion engines. During this part of the course the principles of thermodynamics, fluid mechanics, and heat transfer will be applied to the analysis of internal combustion engines. The problematics related to engine emissions will be reviewed together with the emissions regulations and controls. Engine testing and control and overall engine performances evaluation are also included. 
  • The second part of the course is focused on gas turbines and gives a short introduction to gas turbine cycles, axial and radial compressors.

Course material

Study cost: More than 100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  • Colin R. Ferguson Allan T. Kirkpatrick, Internal Combustion EnginesApplied Thermosciences, Third Edition, Wiley (2016)
  • Slides on Toledo

Is also included in other courses

H04S6B : Combustion Engines

Combustion Engines: Exercises (B-KUL-H04S8a)

0.7 ECTS : Practical 8 First termFirst term

Content

Further elaboration on the subject matter of the lectures, by means of practical exercises.

Is also included in other courses

H04S6B : Combustion Engines

Pneumatic and Hydraulic Drive Systems: Lectures (B-KUL-H04S9a)

1.73 ECTS : Lecture 13 First termFirst term

Content

The following topics are treated


 

  • Production of compressed air, pneumatic engines and valves. 

  • Control of pneumatic systems (intuitive, cascade method, Karnaugh maps, classic electropneumatics).

  • Control of pneumatic systems (PLCs, pneumatic servo systems, field busses and sensor/actuator busses). 

  • Hydraulic pumps; engines and valves, simple hydraulic circuits, hydraulic groups. 

  • Hydrostatic drives (hydraulic pump servo systems), quasi-static behaviour of hydraulic servosystems. 

  • Dynamic behaviour of hydraulic servo-engines, electrohydraulic servo-valves and circuits.

Course material

Own lecture notes (VTK)
Additional notes are made available on Toledo

Format: more information

Teaching course in a large auditorium
Slides with video animations

Evaluatieactiviteiten

Evaluation: Mechanical Drive Systems (B-KUL-H24S6a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : List of formulas

Explanation

The examination is based on the lectures as well as on the exercises. The student gets 4 questions (weight in total score is indicated)

  • Question 1 on combustion engines
  • Question 2 on combustion engines
  • Question 3 on pneumatics
  • Question 4 on hydraulics

Participation to lab sessions is compulsory. The marks on the lab sessions are part of the total mark on combustion engines.

Students taking part in an exchange program during the first semester must contact the lecturer to define a special assignment that will be considered equivalent to the laboratory sessions.
Unjustified absence for a lab session or to the special lab assignment results in a score of 0/20 for the whole course.

The final mark is calculated as a geometric mean over both course parts. 

The part on combustion engines is closed book, formular is allowed.

The part on pneumatics and hydraulics is open book, simple calculator allowed.

Information about retaking exams

Retaking the exam is always about both components of the course. It is not possible to retake lab sessions. The examination system for the third examination period is identical to that of the first examination period.

ECTS Optimization of Mechatronic Systems (B-KUL-H04U1C)

6 ECTS English 50 First termFirst term Cannot be taken as part of an examination contract
Decré Wilm (coordinator) |  Patrinos Panos |  N. |  Decré Wilm (substitute)

Aims

The course gives insight into the mathematical formulation of optimization problems and deals with advanced methods and algorithms to solve these problems. The knowledge of the possibilities and shortcomings of these algorithms should lead to a beter understanding of their applicability in solving concrete engineering problems. An emphasis will be placed on mechatronic systems: the student learns to select the appropriate solving methods and software for a wide range of optimization problems from the field of mechatronics, and learns to correctly interpret the results.

The following knowledge and skills will be acquired during this course:

  • The student will be able to formulate a mathematical optimization problem starting from a concrete engineering problem.
  • The student will be able to classify optimization problems into appropriate categories (e.g., convex vs. non-convex problems).
  • The student will be familiar with different optimization strategies and their properties, and will hence be able to decide which strategy to use for a given optimization problem.
  • The student will be able to formulate the optimality conditions for a given optimization problem.
  • The student will have a profound understanding of a wide variety of optimization algorithms and their properties, and will be able to apply the appropriate algorithms for a given optimization problem.
  • The student will be familiar with state-of-the-art optimization software packages, and will be able to use these in an efficient manner.
  • The student is able to independently define and solve practical optimization problems for mechatronic systems (e.g. trajectory optimization, motion control, vibration reduction). To this end he is able to formulate a mathematical model of the mechatronic system, the objective function and the constraints (e.g. in terms of position/velocity/acceleration, actuation limits, technological limits). While doing this he is able to make simplifying assumptions, and to make these assumptions explicit.
  • Based on the mathematical formulation the student is able to recognize the nature of the optimization problem, select an appropriate numerical solution technique and apply this solution technique using existing software packages.
  • The student is able to verify the validity of the obtained results, and is able to critically evaluate and interpret the results (e.g. obtained accuracy, required calculation time) based on physical insight in light of the assumptions made.

Previous knowledge

Skills: the student should be able to analyze, synthesize and interpret.

Knowledge:

  • Basic knowledge of analysis, numerical mathematics, and numerical linear algebra.
  • Basic knowledge of systems and control, kinematics and dynamics of machinery, mechanical vibrations and electrical machines, as introduced in the subjects H01N0A, H01L8A and H01F7A or equivalent.

Is included in these courses of study

Onderwijsleeractiviteiten

Optimization: Lecture (B-KUL-H03E3a)

4 ECTS : Lecture 30 First termFirst term

Content

1. Introduction
- a number of motivating examples (control, fitting, planning)
- mathematical modelling of optimization problems
- the importance of convexity
- classification of optimization problems
2. Algorithms for continuous optimization without constraints
- the two basic strategies: line search or trust region techniques
- gradient-based techniques: the steepest gradient and the added gradient method
- Newton and quasi-Newton techniques
- special methods for non-linea least square problems
3. Algorithms for continuous optimization with constraints
- the KKT-optimization conditions
- algorithms for linear problems: simplex-method and primal-dual interior point method
- algorithms for quadratic problems: active-set technique and interior point method
- convex optimization: formulation, the concept duality, algorithms
- general non-linear optimization (penalizing and barrier techniques, connection to interior point algorithms)

4. Introduction to global optimization methods
- deterministic methods (branch and bound, ...)
- stochastic and heuristic methods (Monte Carlo methods, simulated annealing, evolutionary algorithms, swarm-based algorithms,...)

5. Software
- discussion of the possibilities of the most current optimization software-packages
- sources on the internet: the Network Enabled Optimization Server

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

- Numerical Optimization, J. Nocedal and S. Wright, Springer, New York, 1999.
- Optimization Software Guide, J. Moré and S. Wright, SIAM, Philadelphia, 1993.

Is also included in other courses

H03E3A : Optimization

Optimization of Mechatronic Systems: Exercises and Laboratory Sessions (B-KUL-H04U1a)

2 ECTS : Practical 20 First termFirst term
N. |  Decré Wilm (substitute)

Content

1) guided exercise sessions on:

  • appropriate formulations of problems as (convex) optimization problems
  • working out and applying numerical optimization techniques such as Gauss-Newton methods, sequential quadratic programming, interior point algorithms...
  • optimal control and algorithmic differentiation

2) independent project work: formulate and solve a mechatronic optimization problem (individually or in a group of two students)

Course material

- Numerical Optimization, J. Nocedal and S. Wright, Springer, New York, 1999.
- Optimization Software Guide, J. Moré and S. Wright, SIAM, Philadelphia, 1993.

Evaluatieactiviteiten

Evaluation: Optimization of Mechatronic Systems (B-KUL-H24U1c)

Type : Exam during the examination period
Description of evaluation : Oral, Written
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

Evaluation method:

  • Evaluation of the OLA “Optimization: lecture”: written exam.
  • Evaluation of the OLA “Optimization of mechatronic systems: exercises and laboratory sessions": oral exam based on independent project work.

Grading:

The OPO grade is calculated as a weighted sum of the OLA grades, using the number of ECTS credits for each OLA as a weighting factor.

 

ECTS Numerical Modelling in Mechanical Engineering (B-KUL-H04U3A)

5 ECTS English 52 First termFirst term Cannot be taken as part of an examination contract
Desmet Wim (coordinator) |  Baelmans Tine |  Desmet Wim |  Van Belle Lucas (substitute) |  Meyers Johan

Aims

Students are able to explain modern methods for the numerical simulation of phenomena and systems in mechanical engineering. For simple problems, students are able to elaborate a numerical discretization method into a computational code, and verify and validate their implementation. They can use modern commercial software, and can argument good choices of available techniques, and simulation set-up. Finally, students are able to perform a critical assessment of simulation results, based on appropriate mathematical relationships for analysis of numerical methods.

*

The student is able to implement, simulate, and analyze simple 1D and 2D problems from mechanical engineering or energy sciences.
 

*

Starting from different governing equations in the domains of mechanical engineering and energy sciences, the student recognizes the structure and common elements which lead to the formulation of a set of generic numerical discretization schemes. He can argument correct choices for the formulation of partial differential equations and boundary conditions, and is able to implement their numerical discretization for simple model problems. The student is able to describe, explain, and use finite-difference and finite-volume discretization techniques. Moreover is able to perform a critical analysis of discretization methods based on techniques for evaluation of accuracy, stability, and convergence. The student understands, and is able to discuss the potential and limitations of different discretization techniques and methods for numerical analysis.

Previous knowledge

Expected previous knowledge is situated in two different areas:

  • in fundamental knowledge of physical phenomena in mechanics: heat transfer, fluid mechanics, structural mechanics...
  • in basic mathematical techniques: solution of normal and partial differential equations, numeral integration, solution of systems of algebraic equations, eigenvalue problems...

Identical courses

H00R8A: Numerieke modellering in de mechanica

Onderwijsleeractiviteiten

Finite Difference and Finite Volume Modelling: Lectures (B-KUL-H04U4a)

1.72 ECTS : Lecture 13 First termFirst term

Content

In the introduction, and overview is presented of the different type of applications in mechanical engineering and energy sciences focussing on common properties for numerical simulation. The governing partial differential equations are formulated, and complemented with boundary conditions and initial conditions. The finite-difference technique and the finite-volume technique are treated, focussing on

•    Spatial discretization and interpolation 
•    Discrete implementation of boundary conditions
•    Time integration schemes 
•    Linearization of non-linear governing systems
•    Introduction to the use of finite-volume discretization for the numerical simulation of Navier-Stokes equations

In addition, various tools for (numerical) analysis are introduced:

•    Mathematical characterization of partial differential equations and consequences for the selection and placement of boundary conditions
•    Taylor series development for determination of accuracy of numerical schemes, and consequences for convergence properties
•    Analysis of numerical stability using Von Neuman analyses, etc.

Each of these methods and analysis tools is discussed with attention for the necessary conditions for their validity and reliability.
 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Is also included in other courses

H9X34A : Numerical Methods in Energy Sciences

Finite Difference and Finite Volume Modelling: Seminars (B-KUL-H04U5a)

0.78 ECTS : Practical 13 First termFirst term

Content

See content of the lecture. During the seminars, students program (parts) of numerical discretization and solution procedures in MATLAB.
 

Is also included in other courses

H9X34A : Numerical Methods in Energy Sciences

Finite Elements: Lectures (B-KUL-H04U6a)

1.72 ECTS : Lecture 13 First termFirst term
Desmet Wim |  Van Belle Lucas (substitute)

Content

In the introduction to the course, the different types of applications in mechanics are formulated in a manner that should allow to start simulation. For a wide range of applications, the ruling differential equations are formulated and completed with the boundary conditions and preliminary conditions.
Afterwards, the simulation principles of finite elements will be discussed.
For these methods, the basic principles of model formation and solving techniques are presented. Next to this, attention will also go to the conditions which a model should meet for the results to be considered reliable.
During the lectures, all principles are explained and during the seminars the students make models with commercial software. They also programm parts of solving procedures in MATLAB.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Is also included in other courses

H0N44A : Numerical Modelling in Biomedical Engineering

Finite Elements: Seminars (B-KUL-H04U7a)

0.78 ECTS : Practical 13 First termFirst term
Desmet Wim |  Van Belle Lucas (substitute)

Content

See the contents of the lecture.
During the lectures, all principles are explained and during the seminars the students make models with commercial software. They also programme part of solving procedures in MATLAB.

Evaluatieactiviteiten

Evaluation: Numerical Modelling in Mechanical Engineering (B-KUL-H24U3a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material

ECTS Numerical Techniques in Fluid Dynamics (B-KUL-H04U8A)

3 ECTS English 20 First termFirst term
Meyers Johan (coordinator) |  Baelmans Tine |  Meyers Johan

Aims

Based on specialised literature, handbooks and own knowledge, the student is able to select an appropriate numerical scheme for simulation problems in fluid mechanics, which appear in application areas related to automobile industry, aerospace, energy conversion technology, air conditioning, etc. The student is capable of implementing these techniques in their most simple version, and is able to verify and validate them.

Previous knowledge

Basic knowledge of numerical methods, and in particular finite-difference, and finite-volume techniques. 
 

Order of Enrolment



SIMULTANEOUS(H04U3A) OR SIMULTANEOUS(H00R8A) OR SIMULTANEOUS(H9X34A) OR SIMULTANEOUS(H00S9A)


H04U3AH04U3A : Numerical Modelling in Mechanical Engineering
H00R8AH00R8A : Numerieke modellering in de mechanica
H9X34AH9X34A : Numerical Methods in Energy Sciences
H00S9AH00S9A : Numerieke methoden in energiewetenschappen

Is included in these courses of study

Onderwijsleeractiviteiten

Numerical Techniques in Fluid Dynamics: Theory Lecture (B-KUL-H04U8a)

1.34 ECTS : Lecture 12 First termFirst term

Content

  •  Formuleren en discretiseren van onsamendrukbare Navier-Stokes (NS) vergelijkingen met behulp van eindige volume techniek.
  • Oplossen van grote niet-lineaire discrete stelsels volgend uit de discretisatie van de NS vergelijkingen: Newtongebaseerde methodes, time marching (expliciet versus impliciet), keuze linearisatie, ontkoppleing van de vergelijkingen.
  • Gebruik van ‘pressure-correction’ technieken
    voor het ontkoppelen van de druk bij linearisatie
  • Inleiding tot het oplossen van grote lineare
    stelsels en gevolgen voor keuzes met betrekking tot linearisatie en
    ontkoppeling
  • Door studenten geselecteerde onderwerpen die naar
    voren gebracht worden in de context van het Projectwerk en de Seminaries




     

Course material

  • J.H. Ferziger, M. Peric, “Computational methods for fluid dynamics”, Springer Verlag, 2002.
  • C. Hirsch, “Numerical computation of internal and external flows”, Vol 1 and 2, Wiley, 1997.

Numerical Techniques in Fluid Dynamics: Project (B-KUL-H04U9a)

1.66 ECTS : Assignment 8 First termFirst term

Content

Implementation of a 2D incompressible Navier-Stokes
solver, starting from a programming skeleton provided in Matlab. Free choice of spatial discretization, linearization, pressure correction method, etc. Verification and validation of the code are performed based on the solution of a Hagen-Poiseuille
flow. Results and discussion of verification and validations are synthesized in the brief report.

The task  is performed in teams of two to three students.
 
Literature study in a specialized topic related to numerical fluid mechanics. At the start of the assignment, two to three relevant papers are provided as a starting basis. Based on the literature survey, a synthesis is presented during a presentation for peer students.
 
The choice of the topic is based on a list:

  • Discretization schemes: flux limiters, numerical diffusion, higher order
  • Discretization errors in LES
  • Energy-conservative discretization
  • Matrix inversion: preconditioning, multi-grid
  • Non-reflecting boundary conditions
  • Automatic grid adaptation
  • Particle-laden flows
  • Free-surface flows
     

Course material

  • Programming skeleton provided in Matlab
  • Two to three papers per selected literature topic are provided by the didactic team.

Evaluatieactiviteiten

Evaluation: Numerical Techniques in Fluid Dynamics (B-KUL-H24U8a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Paper/Project, Presentation
Type of questions : Open questions
Learning material : Reference work

Explanation

 
The evaluation is based on three aspects:
 

  • The presentation of the selected literature subject to peer students (during the term). 30% of the points
  • The implementation of a NS code (70% of the points), based on the report on the verification and validation, and the submitted code.








     

ECTS Deterministic Decision Models (B-KUL-H04V5A)

3 ECTS English 28 First termFirst term

Aims

The student should be able to model a problem in a mathematical way, find the proper solution method and discuss the results taking certain assumptions into account.

Previous knowledge

Knowledge of algebra.

Is included in these courses of study

Onderwijsleeractiviteiten

Deterministic Decision Models: Lecture (B-KUL-H0E56a)

2.7 ECTS : Lecture 18 First termFirst term

Content

This course discusses the basic deterministic techniques of operational research. In particular attention is spent on linear and integral programming. Particularly the choice and construction of models are discussed and the role of the computer and modern optimization software are illustrated on the basis of numerous examples (small exercises and practical studies), both during the lectures and during the practical sessions.
Following topics are discussed: structure of linear models, the simplex method, sensitivity analysis, transport and allocation models, network models, integral and combinatorial programming. Apart from optimal procedures (simple and multiple aims) much attention goes to heuristic solution procedures. The main means of support is the LINDO/LINGO package.

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Is also included in other courses

H0T99A : Decision Making for Industrial Management

Deterministic Decision Models: Exercises (B-KUL-H0E57a)

0.3 ECTS : Practical 10 First termFirst term

Content

Exercise sessions are based on the different chapters discussed during the lectures of deterministic decision models.

Is also included in other courses

H0T99A : Decision Making for Industrial Management

Evaluatieactiviteiten

Evaluation: Deterministic Decision Models (B-KUL-H24V5a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions, Closed questions
Learning material : Calculator, Course material, Reference work

Explanation

The exam is written and open book. Students are allowed to use the course material (book, exercises, lecture notes,...) during the exam.

The exam consists of three exercises.

ECTS Introduction to Operational Management and Logistics (B-KUL-H04V6A)

3 ECTS English 23 First termFirst term

Aims

The student is able to model an operations management and logistics problem, make the proper assumptions, propose and apply a solution method and to discuss the results.

Previous knowledge

Knowledge on operations research and basic economics

Onderwijsleeractiviteiten

Introduction to Operational Management and Logistics (B-KUL-H04V6a)

3 ECTS : Lecture 23 First termFirst term

Content

The course consists of several chapters discussing:

  • what is operations management and logistics: overview, links and trends
  • forecasting
  • aggregate production planning
  • inventory management for end items
  • production and inventory control systems such as MRP, JIT, TOC
  • conclusions

Course material

The course material will be available on TOLEDO.

Format: more information

Interactive ex cathedra lectures + exercises during class

Evaluatieactiviteiten

Evaluation: Introduction to Operational Management and Logistics (B-KUL-H24V6a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions, Closed questions
Learning material : Course material, Calculator

ECTS Production Machines and Systems (B-KUL-H04W0A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract

Aims

1. The student knows and learns how modern production machines and/or systems constructed. The student can explain the role and function of the different components (frames, guides, actuators, control,..) of an existing machine or system (based on real machine or a drawing/model). 
2. Based on a given product specification (dimensions, precision, lot sizes, ..), the student can conceptually design a machine / system conception (component selection).
3. The student knows the different ways to automate a production machine/system (computer control). He learns how the control of a production system is performed.
4. The student knows the problems related to the thermal and dynamic behavior of production machines and systems. He also learns the methods / procedures for the improvement of the thermal and dynamic behavior of the machine tool/system. 
5. The student knows the procedures (and methods) for the purchase of a production machine and system. This will include methods to measure the accuracy, dynamic and thermal behavior of the machine tool.  

 

Previous knowledge

Basic knowledge of machine construction (machine elements), production techniques and materials.

Is included in these courses of study

Onderwijsleeractiviteiten

Production Machines and Systems: Lecture (B-KUL-H04W0a)

2.4 ECTS : Lecture 18 First termFirst term

Content

The course comprises the following chapters:


 

  • Concepts for production machines and systems
  • Construction of machine tools (building forms, materials, construction, ..)
  • Tool spindles (construction, drives, tool holder systems) 
  • Clamping, slides, .. (guides, drives, positioning systems, ..)
  • Controllers (PLC, NC programming, "feature-based" controls, communications, adaptive control)
  • Flexible production systems (integration of machines, palletizing, communication between machines, ..)
  • Thermal stability of machine tools
  • Dynamic behavior of machine toolsQuality control of machine tools 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

The course text is a set of detailed slides (text provides enough to completely understand the content). This slides are available at Toledo 

Format: more information

Classical lectures! The teacher covers the material using PowerPoint presentations, supplemented by notes on the blackboard

Production Machines and Systems: Laboratory Sessions (B-KUL-H04X1a)

0.6 ECTS : Practical 10 First termFirst term

Content

The four objectives are translated into four practical sessions:
 
Session 1 & 2 (2x2, 5 hours): Study of the construction of a production machine / system. Firstly, a number of production machines / systems (available in the workshop of the department of mechanical engineering) are explained. The student must also independently analyze an existing machine. Furthermore, during this practicum a production machine / system is designed based on a given product specification.
Session 3: Actuation of machine tools (PLC, positioning) 
Session 4: Evaluation of machine tools (accuracy of the machine, dynamic behavior, ..)

Course material

For the various practical sessions, course material is available on Toledo

Format: more information

The students work in a lab session in groups of 4 students. If a guiding text (explaining the lab session) is available, it should be read in advance. The students are supervised by an assistant, but the practical session should be done by the student as independent as possible.

Evaluatieactiviteiten

Evaluation: Production Machines and Systems (B-KUL-H24W0a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : None

Explanation

Closed book exam.
Lab session attendance is compulsory.
Unjustified absence for a lab session results in a score of 0/20 for the whole course.

Information about retaking exams

It is not possible to retake lab sessions, so a retake of the exam is not possible in case of an unjustified absence for a lab session.

ECTS Aircraft Performance and Stability (B-KUL-H04W6A)

5 ECTS English 43 Second termSecond term
Naets Frank (coordinator) |  Giulietti Fabrizio |  Naets Frank

Aims

The student is able to calculate aircraft performances related to the complete flight profile (take-off, climb, cruise, landing, turns) based on simplifying assumptions and approximate empirical relations. The student is able to compare the results of these calculations with the expected orders of magnitude and to evaluate their accuracy in light of the assumptions made.
The student is able to formulate the requirements for static stability (longitudinal, directional and lateral) and determine the required deflection of the control surfaces, both for symmetric and asymmetric motions.
The student is able to derive a linearised dynamic model for control purposes starting from the dynamic equations of an aircraft.

Previous knowledge

Basic mechanics, aerodynamics and system theory as introduced in the subjects 'Toegepaste mechanica: deel1', 'Toegepaste Mechanica: deel 2', 'Aerodynamica' and 'Systeemtheorie' or equivalent.

Is included in these courses of study

Onderwijsleeractiviteiten

Aircraft Performance and Stability: Theory Lecture (B-KUL-H04W6a)

4.43 ECTS : Lecture 33 Second termSecond term

Content

Part I: Performance
 
·         introduction: review of basics of aerodynamics; characteristics of propulsion systems for propeller and jet planes
·         equations of motion in a vertical plane
·         glide
·         level flight
·         climb
·         range and endurance
·         turns: coordinated turn in a horizontal plane; general turning flight
·         take-off and landing
 
Part II: static stability and control
·         introduction: review of aerodynamic characteristics of wing profiles, aerodynamic center and center of pressure
·         static longitudinal stability: equilibrium equation, stick-fixed static stability, control of the elevator, stick-free static stability, stick force
·         static directional stability: equilibrium equation, rudder-fixed static stability, control of the rudder, rudder-free static stability, pedal force
·         static lateral stability: equilibrium equation, control of the ailerons
 
Part III: Equations of motion and dynamic stability
 
·         definition of reference frames
·         relation between angular velocity and derivatives of Euler angles
·         force and moment equations
·         derivation of a linear model for small disturbances
 
 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

B.N. Pamadi, Performance, Stability, Dynamics and Control of Airplanes, AIAA Education Series

Aircraft Performance and Stability: Practice (B-KUL-H04W7a)

0.57 ECTS : Practical 10 Second termSecond term

Content

Part I: Performance
 
·         introduction: review of basics of aerodynamics; characteristics of propulsion systems for propeller and jet planes
·         equations of motion in a vertical plane
·         glide
·         level flight
·         climb
·         range and endurance
·         turns: coordinated turn in a horizontal plane; general turning flight
·         take-off and landing
 
Part II: static stability and control
·         introduction: review of aerodynamic characteristics of wing profiles, aerodynamic center and center of pressure
·         static longitudinal stability: equilibrium equation, stick-fixed static stability, control of the elevator, stick-free static stability, stick force
·         static directional stability: equilibrium equation, rudder-fixed static stability, control of the rudder, rudder-free static stability, pedal force
·         static lateral stability: equilibrium equation, control of the ailerons
 
Part III: Equations of motion and dynamic stability
 
·         definition of reference frames
·         relation between angular velocity and derivatives of Euler angles
·         force and moment equations
·         derivation of a linear model for small disturbances
 
 

*

The activities consist of solving numerical example problems directly related to the theory introduced in the lectures.
In fact, lectures and practice sessions are merged together into combined sessions. Immediately after to the introduction of new theoretical material, the material is illustrated by a numerical example problem solved by the students under the guidance of the teacher. The problems solved in these sessions are representative for the problems that have to be solved during the examination.

Course material

B.N. Pamadi, Performance, Stability, Dynamics and Control of Airplans, AIAA Education Series

Evaluatieactiviteiten

Evaluation: Aircraft Performance and Stability (B-KUL-H24W6a)

Type : Exam during the examination period
Description of evaluation : Written

Explanation

Part I and II: the exam consists of problems related to performance and static stability.

Part III: the exam consists of problems and theoretical derivations related to dynamic stability.

The students may use an approved list of formulas and have access to Matlab.

ECTS Structural Dynamics, Analysis and Numerical Modelling (B-KUL-H04X0A)

6 ECTS English 84 First termFirst term Cannot be taken as part of an examination contract

Aims

The student acquires theoretical and practical insight in the process of determining the dynamics of a mechanical system by experiments and/or numerical analysis.
The student is able to determine the dynamic characteristics of simple mechanical structures by executing an experimental modal analysis and building a numerical model. He/she can interprete the results of both approaches and knows the processes to combine them to one result. In this process he/she learns how to use state-of-the-art hardware and software.
The student can report on the flow and results of a small scale dynamic analysis project, including experimental and numerical approaches.
The student is able to carry out a literature survey on subjects related to the experimental or numerical dynamic analysis of mechanical structures.

 

Previous knowledge

The students should have sufficient knowledge of mechanical vibrations, system theory, sensors and measuring systems and numerical modelling. It is the students own responsibility to fill possible gaps in his foreknowledge. Lack of foreknowledge should not disturb the normal flow of the teaching activities.

Is included in these courses of study

Onderwijsleeractiviteiten

Structural Dynamics, Analysis and Numerical Modelling: Theory Lecture (B-KUL-H04X0a)

1.88 ECTS : Lecture 14 First termFirst term

Content

Part 1 : Identification and use of structural dynamic models (Modal testing) 

  • Review of the theory of SDOF and MDOF mechanical vibrations, definition of modal parameters

  • Digital signal processing

  • Identification of FRF matrices

  • Instrumentation

  • Excitation techniques

  • Time and frequency domain parameter identification

  • Accuracy of modal models, model validation techniques

  • Sensitivity analysis

  • Structural modification techniques

  • Correlation experiment – simulation

  • Model updating
     

Part 2 : Finite element models for structural dynamic analysis

  • Modelling considerations

  • Solution methods

  • Model reduction techniques

Course material

Study cost: 11-25 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

'Modal analysis theory and testing' (W. Heylen, P. Sas, S. Lammens) (published by PMA-KULeuven).
Course notes about finite element techniques for dynamics.
Instruction manuals for the use of hardware and software (TOLEDO)

Structural Dynamics, Analysis and Numerical Modelling: Workshop (B-KUL-H04Y1a)

4.12 ECTS : Assignment 70 First termFirst term

Content

4  hands-on seminars:
-  experimental modal analysis set-up and frequency response function measurements
- modale parameter estimation
- numerical dynamic analysis
- model updating

 
Project:
- experimental and numerical modal analysis of a self chosen simple mechanical structure, including model updating
- reporting on the results of the experimental and numerical assessment of the dynamics of a simple mechanical system and on the model updating results.

 
Literature survey:
- synthesis of 3 to 4 journal papers on a given subject, related to experimental and numerical modal analysis
- presentation of this literature survey.

Course material

Specific user manuals for the use of measurement systems and software.

Format: more information

This activity contains:
1. 4 seminars to introduce the students to the techniques and equipment needed to carry out the project
2. the project itself
3. a literature survey

Evaluatieactiviteiten

Evaluation: Structural Dynamics, Analysis and Numerical Modelling (B-KUL-H24X0a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Report, Presentation, Participation during contact hours
Type of questions : Open questions
Learning material : Course material, Reference work

Explanation

The evaluation contains 3 parts:

Permanent evaluation by following up a project. This project consists of an experimental and numerical modal analysis of a mechanical structure, selected by the students (in teams of 2 or 3 students). The students start the project around semester week 7. The student is judged on practical preparation of, knowledge of the practical and theoretical background needed for,and presence and collaboration during the test campaign.
This part counts for 3 of the 20 points. Succeeding for this part is required to succeed for the entire course. It is not possible to retake this part in the framework of a second chance exam.

Written and oral reporting about the project. The deadline of the report is at least 4 working days before the presentation in front of the teaching professors and the coaching assistants. The students fix the moment of presentation in consensus with the teaching professors (up to the end of the examination period). During the oral defense the students will be interrogated about the reasons for made choices during the project, about the interpretation of the results and about the (physical) background and principles of used methods.
This part counts for 15 of the 20 points.

A literature survey about a complementary subject by the same team: This includes a deeper investigation about a subject covered in the course and imposed by the course teachers.
This part counts for 2 of the 20 points. Succeeding for this part is required to succeed for the entire course.
If passed, the score is transferred to the score of a potential second chance exam.

Information about retaking exams

The student can’t redo the practical measurement sessions, hence the student should have passed this as part of the first exam. The student has to write a report as mentioned for the first exam on the basis of existing measurements and information about a structure. Similarly as for the first exam, this report is to be presented to the teaching professors and the coaching assistants. The coaching of this project is subjected to the availability of the coaching assistants.

ECTS Project Management (B-KUL-H04X2A)

3 ECTS English 20 Second termSecond term Cannot be taken as part of an examination contract
Duflou Joost (coordinator) |  Duflou Joost |  Joubert Johan

Aims

The aim of this course is to provide the student with an overview of techniques and means that are available for the start up, execution, follow up and adjustment of large projects. By means of examples and case studies insight is created  supporting recognition of typical patterns, analysis of situations and identification of  suitable methods and/or techniques recommendable for effectively steering projects, with well-optimized chances to reach the  preset project deliverables. 
 

Previous knowledge

This course is not connected to a specific graduation programme. Therefore, the contents of the assignments can be altered to suit the graduation programme of the student. Still, it is recommended to plan this course in a later stage of the master programme to ensure that any lack of technical background will be not be a hindrance in working on specific cases or assignments. Access to a familiar project case (e.g. thesis project) is required in view of the evaluation format which is based on a case study. A possible course on business administration in the curriculum can best be scheduled before attending this course.

Is included in these courses of study

Onderwijsleeractiviteiten

Project Management (B-KUL-H04X2a)

3 ECTS : Lecture 20 Second termSecond term

Content

Introduction

  • What is project management?
  • Situation within the general planning problem
  • Characteristics of projects
  • Project manager
  • Components, concepts and terminology
  • Life cycle of a project: strategical and tactical considerations
  • Factors responsible for the success of a projectOrganisational structures and task allocation
  • Organisational structures
  • Staff management
  • Concurrent engineering
  • Assessment and selection
  • Division of a project
  • Outsourcing or internal work?
  • Conflict evaluation:  within the organisation, environmental effects, othersProject planning
  • Introduction
  • Duration of project activities
  • Learning effects
  • Precedence relations
  • Gantt-representation
  • Arrow network for critical path mathematics
  • Block network for critical path mathematics
  • LP formulation
  • Aggregation of activities
  • Dealing with uncertainty
  • Analysis of PERT and CPM presuppositions
  • Conflicts in planningProject budget
  • Introduction
  • Project budget and company goals
  • Drawing up a budget
  • Budget management
  • FinancingManagement of resources
  • Influence of resource limitations on the project
  • Classification of resources
  • Planning of resources and project with time as a limiting factor
  • Planning of resources and project with resources as a limiting factor
  • Priority rules for the allocation of resources
  • Subcontracting/assessing suppliers
  • Executing projects in parallelProject control
  • Introduction
  • Control systems
  • Following up and controling timewise planning and costs
  • Reporting
  • Updating cost and planning parameters
  • Technological controlComputer support for project management
  • Introduction
  • Use of computers
  • Criteria for software selection
  • Software implementation
  • Data management and knowledge managementProject termination
  • Introduction
  • When to finalise a project?
  • Final steps in the termination of a projectCase studies

Course material

Handbook, presentations (on Toledo).

Format: more information

Lecture.

Evaluatieactiviteiten

Evaluation: Project Management (B-KUL-H24X2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions, Closed questions
Learning material : None

Explanation

Assignment per two students with presentation and defense (oral exam) during exam session. Exam timing is coordinated per team of students.

ECTS Control Theory (B-KUL-H04X3A)

5 ECTS English 49 First termFirst term Cannot be taken as part of an examination contract

Aims

The student is able to apply the basic time-domain system identification procedure for linear time-invariant systems with one input and one output. This includes: selection of a a system model structure, selection of a system excitation, linear-least squares model parameter estimation and validation of the model accuracy.

The student is able to linearize a nonlinear system, that is, to derive an approximate linear model for a given or to be determined equilibrium state.

For a given linear time-invariant single-input single-output system and given design specification in time domain or frequency domain, the student is able to

  • design a classical compensator using frequency-domain methods (choosing a type of compensator and determining its parameters);
  • design a compensator based on state-feedback, including a closed-loop state estimator;
  • add feed forward to a classical compensator or a state-feedback compensator to eliminate steady-state errors on various input signals;
  • evaluate the designs above critically.

The student is able to design a Kalman filter to estimate the states of a linear or nonlinear system optimally, and to evaluate the design critically.

Previous knowledge

  • solving linear differential and difference equations with constant coefficients in time and frequency domain and its use in the analysis of linear time-invariant systems
  • solving system linear first-order differential and difference equations with constant coefficients in time and frequency domain and its use in the analysis of linear time-invariant systems
  • Fourier series
  • Fourier transform
  • complex function theory
  • solving systems of linear equations
  • elementary matrix calculus
  • eigenvalues and eigenvectors
  • frequency domain analysis of discrete- and continuous-time systems
  • sampling of signals
  • transformation of continuous-time system models to discrete-time
  • transformation between state-space models and input-output models

Identical courses

H00S3A: Regeltechniek

Onderwijsleeractiviteiten

Control Theory: Lectures (B-KUL-H04X3a)

3.5 ECTS : Lecture 26 First termFirst term

Content

  • Introduction to least-squares time domain system identification
  • Linearization of nonlinear systems
  • Introduction to control systems
  • Basic properties of feedback systems
  • Performance of feedback systems
  • Root locus analysis and design
  • Frequency-response based compensator design
  • State feedback based comensator design
  • Optimal control (LQR) and optimal estimation (Kalman filter)

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  • G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback control of dynamic systems, Prentice Hall, Inc., 2002 or later editions
  • Handouts of the theory lectures slides
  • Reference material for the part on system modelling (Toledo).This reference material is part of the book: J.L. Shearer, A.T. Murphy, H.H. Richardson, Introduction to system dynamics, Addisson-Wesley Publishing Company, 1971
  • Handouts of exercise and lab sessions

Is also included in other courses

H04X3B : Systems and Control Theory

Control Theory: Exercises (B-KUL-H04X4a)

1.5 ECTS : Practical 23 First termFirst term

Content

Description of exercise sessions and lab-sessions

  • Ex. 1: linearization of nonlinear models + time-domain system identification
  • Ex. 2: properties of systems with and without feedback
  • Ex. 3: stability of feedback systems (root locus and Bode diagram)
  • Ex. 4: design of classical feedback controllers  in the frequency domain
  • Ex. 5: design of state feedback controllers based on pole placement
  • Ex. 6-7: Kalman filtering and linear quadratic optimal regulation (LQR) (quadratic optimal state feedback control and estimation)

Course material

Texts for the exercise sessions and lab session are available on Toledo : overview and summary of subjects of each session, description of the exercises, and selected solutions.

Is also included in other courses

H04X3B : Systems and Control Theory

Evaluatieactiviteiten

Evaluation: Control Theory (B-KUL-H24X3a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Report

Explanation

The basis for the evaluation is a project on an experimental set-up.
The students work in groups of two on this project.
The project consists of four assignments that relate to different parts of the course.
A separate report must be submitted for each assignment.
The evaluation is based on these reports.
Each report counts for 25% of the total score.

ECTS Systems and Control Theory (B-KUL-H04X3B)

7 ECTS English 69 First termFirst term Cannot be taken as part of an examination contract

Aims

The student is able to apply the basic time-domain system identification procedure for linear time-invariant systems with one input and one output. This includes: selection of a system model structure, selection of a system excitation, linear-least squares model parameter estimation and validation of the model accuracy.

The student is able to linearize a nonlinear system, that is, to derive an approximate linear model for a given or to be determined equilibrium state.

The student is able to analyze continuous and discrete time system in time domain and in frequency domain, based on different system representations, e.g. a transfer function or a state space model description.

The student is able to analyze (periodic, non-periodic continuous and discrete time) signals in the frequency domain, knows how to sample signals and to select an appropriate sampling rate.

The student is able to transform a continuous time model to discrete time and is familiar with aliasing.

The student is able to analyze the stability of systems, controllability and observability of state space models.

The student knows the difference between the different types of stability.

The student can calculate the energy dissipation in a linear system.

For a given linear time-invariant single-input single-output system and given design specification in time domain or frequency domain, the student is able to

  • design a classical compensator using frequency-domain methods (choosing a type of compensator and determining its parameters);
  • design a compensator based on state-feedback, including a closed-loop state estimator;
  • add feed forward to a classical compensator or a state-feedback compensator to eliminate steady-state errors on various input signals;
  • evaluate the designs above critically.

The student is able to design a Kalman filter to estimate the states of a linear or nonlinear system optimally, and to evaluate the design critically.

Previous knowledge

  • solving linear differential and difference equations with constant coefficients in time and frequency domain
  • solving system linear first-order differential and difference equations with constant coefficients in time and frequency domain
  • basic knowledge of Fourier series and Fourier transform
  • complex function theory
  • applied linear algebra
  • solving systems of linear equations
  • elementary matrix operations
  • eigenvalues and eigenvectors

Identical courses

H00S4A: Systeemanalyse en regeltechniek

Onderwijsleeractiviteiten

Control Theory: Lectures (B-KUL-H04X3a)

3.5 ECTS : Lecture 26 First termFirst term

Content

  • Introduction to least-squares time domain system identification
  • Linearization of nonlinear systems
  • Introduction to control systems
  • Basic properties of feedback systems
  • Performance of feedback systems
  • Root locus analysis and design
  • Frequency-response based compensator design
  • State feedback based comensator design
  • Optimal control (LQR) and optimal estimation (Kalman filter)

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  • G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback control of dynamic systems, Prentice Hall, Inc., 2002 or later editions
  • Handouts of the theory lectures slides
  • Reference material for the part on system modelling (Toledo).This reference material is part of the book: J.L. Shearer, A.T. Murphy, H.H. Richardson, Introduction to system dynamics, Addisson-Wesley Publishing Company, 1971
  • Handouts of exercise and lab sessions

Is also included in other courses

H04X3A : Control Theory

Control Theory: Exercises (B-KUL-H04X4a)

1.5 ECTS : Practical 23 First termFirst term

Content

Description of exercise sessions and lab-sessions

  • Ex. 1: linearization of nonlinear models + time-domain system identification
  • Ex. 2: properties of systems with and without feedback
  • Ex. 3: stability of feedback systems (root locus and Bode diagram)
  • Ex. 4: design of classical feedback controllers  in the frequency domain
  • Ex. 5: design of state feedback controllers based on pole placement
  • Ex. 6-7: Kalman filtering and linear quadratic optimal regulation (LQR) (quadratic optimal state feedback control and estimation)

Course material

Texts for the exercise sessions and lab session are available on Toledo : overview and summary of subjects of each session, description of the exercises, and selected solutions.

Is also included in other courses

H04X3A : Control Theory

Systems Theory: Lectures (B-KUL-H09W4a)

1.5 ECTS : Lecture 12 First termFirst term

Content

  • Basic signals
  • Continuous-time and discrete-time system analysis in time domain
  • Continuous-time and discrete-time system analysis using the Laplace transform / z-transform
  • Analysis of signals and systems (continuous-time and discrete-time ) in frequency domain
  • Stability of linear systems
  • Energy and power in signals and systems

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  • G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback control of dynamic systems, Prentice Hall, Inc., 2002 (sold by VTK)
  • K. Gopalan, Introduction to signal and system analysis, Cengage Learning, 2009 (sold by VTK)
  • Handouts of the theory lectures slides
  • Handouts of exercise sessions (Toledo)

Systems Theory: Exercises (B-KUL-H09W5a)

0.5 ECTS : Practical 8 First termFirst term

Content

  • Ex. S1: simulation diagrams, state-space models and system analysis
  • Ex. S2: Fourier series and transformation, discretization of continuous-time models
  • Ex. S3: Bode diagram, stability, controllability, observability, calculation of energy dissipation

Course material

Texts for the exercise sessions are available on Toledo: overview and summary of subjects of each session, description of the exercises and selected solutions.

Evaluatieactiviteiten

Evaluation: Systems and Control Theory (B-KUL-H24X3b)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Report
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

The evaluation consists of two parts: exercise exam systems theory and project based evaluation for control theory.
The evaluation of the systems theory part counts for 2/7 of the overall evaluation. The evaluation of the control theory part
counts for 5/7 of the overall evaluation.

If the total obtained result is 10/20 or more, but a result of less than 10/20 is obtained for one of the two parts, the total result is adapted to 9/20.
Both parts of the evaluation must be completed in order to complete the course examination.


Systems theory: Written exam in the examination period
- Closed book, with a formulary
- Exercises
- Assessing insight, no theoretical questions

Control theory:

The basis for the evaluation is a project on an experimental set-up.
The students work in groups of two on this project.
The project consists of four assignments that relate to different parts of the course.
A separate report must be submitted for each assignment.
The evaluation is based on these reports.
Each report counts for 25% of the total score for control theory.

 

ECTS Spacecraft Technology and Space Environment (B-KUL-H04X5A)

5 ECTS English 43 First termFirst term Cannot be taken as part of an examination contract

Aims

- being able to evaluate the different elements of an aerospace missions: launching, orbital mechanics and corrections, performing the mission requirements during the lifetime of a spacecraft
- dimensioning and evaluating different (sub)systems of a spacecraft (phase 0-level): structure, propulsion, orbital and attitude control, energy management, thermal control, material choice, payload,….
- acquiring insight of existing aerospace technologies, specific loads and test procedures: launch vehicles, satellite systems, launch and environmental loads
-  getting acquainted to project phasing and scheduling

Previous knowledge

Basic knowledge of advanced maths, mechanics, kinematics, measurement and control techniques, propulsion, heat transfer, thermodynamics, vibrations…

Is included in these courses of study

Onderwijsleeractiviteiten

Spacecraft Technology and Space Environment: Lecture (B-KUL-H04X5a)

3.87 ECTS : Lecture 26 First termFirst term

Content

1. Introduction
-  History and overview of aerospace
 
2. Orbital mechanics
-  Keplerorbits and central force field
-  Generalization of force field: geopotential, flattening and asymmetry
-  Orbit perturbuations: periodic and permanent
-  Swing-by and Lagragian points
 
3. Propulsion, Rockets and Launch
-  Propulsion: thrust, specific impulse, solid, liquid and electrical propulsion, propulsion systems
-  Rocket equation: ideal acceleration and  losses, ∆v,…
-  Rockets: working principles, performance, multi-staging
-  Launching: optimalisation, minimum ∆v, injection errors
-  Ariane rocket: technical description, performance and evolutions
 
4. Satellites
-  Goal, construction and subsystems 
-  Telecommunication satellites and other applications
-  Structure: loads, materials, construction
-  Thermal control: passive, active, materials,..
-  Orbital and attitude control: spin en 3D-stabilized S/C, sensors en control-units
-  Electrical power: solar arrays, batteries,…
-  TTC: antennas, telecommunication
-  Project management: phasing and testing
 
5.  Space Environment
-  microgravity, vacuum, atomic oxygen
-  space weather, electromagnetic and corpuscular radiation, radiation belts,…
-  Meteorides, space debris

Spacecraft Technology and Space Environment: Practicals (B-KUL-H04X6a)

1.13 ECTS : Practical 17 First termFirst term

Content

1. Introduction
-  History and overview of aerospace
 
2. Orbital mechanics
-  Keplerorbits and central force field
-  Generalization of force field: geopotential, flattening and asymmetry
-  Orbit perturbuations: periodic and permanent
-  Swing-by and Lagragian points
 
3. Propulsion, Rockets and Launch
-  Propulsion: thrust, specific impulse, solid, liquid and electrical propulsion, propulsion systems
-  Rocket equation: ideal acceleration and  losses, ∆v,…
-  Rockets: working principles, performance, multi-staging
-  Launching: optimalisation, minimum ∆v, injection errors
-  Ariane rocket: technical description, performance and evolutions
 
4. Satellites
-  Goal, construction and subsystems 
-  Telecommunication satellites and other applications
-  Structure: loads, materials, construction
-  Thermal control: passive, active, materials,..
-  Orbital and attitude control: spin en 3D-stabilized S/C, sensors en control-units
-  Electrical power: solar arrays, batteries,…
-  TTC: antennas, telecommunication
-  Project management: phasing and testing
 
5.  Space Environment
-  microgravity, vacuum, atomic oxygen
-  space weather, electromagnetic and corpuscular radiation, radiation belts,…
-  Meteorides, space debris

Evaluatieactiviteiten

Evaluation: Spacecraft Technology and Space Environment (B-KUL-H24X5a)

Type : Exam during the examination period
Description of evaluation : Oral

ECTS Sensors and Measurements Systems (B-KUL-H04X7A)

5 ECTS English 50 Second termSecond term Cannot be taken as part of an examination contract

Aims

The student can build a measuring system for frequently occurring mechanical measurement problems by selecting or designing the appropriate measuring system components.
The student is able to analyze the components of measurement systems for mechanical quantities. The student is able to compare and critically evaluate measurement systems by combining the knowledge of measuring systems with the knowledge of dynamic mechanical systems and phenomena.
During the practice oriented lab sessions the student increases his/her experimental skills in designing and analyzing measuring systems. The student can in cooperation with others, within the frame work of lab sessions investigate and solve measurement problems and report about it.
During two exercise sessions, the student acquires knowledge about the solution strategies needed to analyze measuring systems for mechanical quantities and to calculate the necessary parameters.

Previous knowledge

The student is supposed to have followed an introductory course in electrotechnology, dynamics and vibrations, systemtheory and control technology. This course is incompatible with H05F7A within the same programme.

Identical courses

H00S2A: Sensoren en meetsystemen

Onderwijsleeractiviteiten

Sensors and Measurements Systems: Lectures (B-KUL-H04X7a)

3.81 ECTS : Lecture 30 Second termSecond term

Content

  • Statistical and dynamic characteristics of measuring systems
  • Accuracy and pressure effects
  • Signals and noise in measuring systems
  • Recorders
  • Signal conditioning systems
  • Signal processing systems
  • Data-reading systems
  • Flow measurements
  • Warmth-effects in measuring systems
  • Optical measuring systems
  • Ultrasonig measuring systems
  • Data-acquisition systems

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

J.P. Bentley, Principles of Measurement Systems, Longmans scientific and Technical, ISBN 00-582-23779-3, 1995.
Additional information on TOLEDO.

Format: more information

The task consists of studying the material, mentioned in 'Study material'.  This material is further explained in the teaching sessions of the course unit H00S2A (Sensoren en meetsystemen).

Sensors and Measurements Systems: Exercises and Laboratory Sessions (B-KUL-H04X8a)

1.19 ECTS : Assignment 20 Second termSecond term

Content

For the lab sessions:

  • Use of Labview
  • Strain gauge measurements
  • Flow measurements
  • Dynamic measurements
  • Position measurements
  • Temperature measurements

Two exercise sessions on the material covered during the colleges.

Course material

Userguide Labs measuring systems, VTK
Information on TOLEDO

For the exercise sessions:
J.P. Bentley, Principles of Measurement Systems, Longmans scientific and Technical, ISBN 00-582-23779-3, 2005.

Format: more information

The task consists of participating to the practical sessions of the course unit H00S2A (Sensoren en meetsystemen)

Evaluatieactiviteiten

Evaluation: Sensors and Measurements Systems (B-KUL-H24X7a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Practical exam, Participation during contact hours
Type of questions : Open questions, Closed questions
Learning material : Course material, Calculator, Reference work

Explanation

Written exam: closed book with self-provided formulary (maximum 4 pages, no text, no graphics and no diagrams), with the aim of testing insight (no memory work) in the subject matter.

Correction of the results of the written exam based on the result of the evaluation of the practical lab sessions:

  •  increase the results of the written exam with 1 point out of 20 if the result of the evaluation of the practical lab sessions is 70% or more and if there were no unauthorized absences at the lab sessions.
  • decrease the results of the written exam with 1 point out of 20 if the result of the evaluation of the practical lab sessions is less than 50% or if there were unauthorized absences at the lab sessions.

The evaluation of the practical lab sessions is based on an assessment of the experimenting skills of the student, by means of the cooperation during and the reports on the experiments done. These reports are asked for at the end of the session. Failing this part automatically means failing the course.

 

 

 

 

Information about retaking exams

If the student failed on the practical lab sessions, he/she will receive an written assignment.

ECTS Reliability of Mechanical Systems (B-KUL-H04Y2A)

3 ECTS English 25 Second termSecond term
Moens David (coordinator) |  Moens David |  Vandepitte Dirk

Aims

Motivation

In current mechanical engineering practice, where we are constantly striving for more energy efficient and thus lighter, optimised products, safety margins become more and more narrow. In this context, reliability is becoming a critical aspect that requires attention from the earliest design phase until the end-of-life of a product. Rendering failure impossible might seem as the ultimate goal when designing new products. Don’t we all want to fly an airplane that simply cannot crash? Or build nuclear plants that can withstand any earthquake? Unfortunately, it is not the binary principle of failure (im)possibility that determines the acceptability of a design. Since neither the eventually produced product nor its environment can be predicted in a deterministic sense, it is all about probability. Keeping that probability of failure at an acceptable level, has become one of the key challenges for engineers today.

Course objectives

The objective of this course is to provide students with a general overview of different aspects of reliability in current mechanical engineering practice. The students gain insight in the typical methodologies for reliability prediction, analysis, verification and optimization. Apart from the methods, they also gain insight in the typical causes of mechanical failure. Furthermore, since the short life cycle of many mechanical products complicates the use of field data and prototype testing in reliability assessment, reliability becomes more and more a critical aspect that needs to be integrated in the design from the earliest phases of the design process.  After successful completion of this course, the student will have insight in and knows how to apply modern methods that are used to predict and verify reliability in this context.

Lectures - learning outcomes

After successful completion of this course, the student has proven to know and understand the meaning of standard terminology in reliability analysis techniques, and is able to

  • select specific distribution types for different classes of reliability problems, and to apply probability theory on these in order to perform the time dependent reliability analysis of mechanical components
  • analyze testing data with respect to the lifetime of a mechanical component, and to transform this information into standard distributions that serve as input for the reliability assessment on the system level
  • quantify the reliability of a complex built-up mechanical system, starting from the analysis on the component level, using quantitative techniques
  • apply Markov process modeling for time dependent reliability assessment of systems including repair and maintenance
  • describe the main properties of qualitative and semi-quantitative techniques for system analysis, to apply the principles of these methodologies on basic problems, and to critically assess their value in a mechanical engineering context.

In the framework of fatigue analysis, the student

  • can derive and interprete typical material properties for stress-based approaches
  • has insight into the sensitivity of these properties with respect to operational conditions
  • is able to apply the stress-based approach for the assessment of the lifetime of a mechanical component that is under regular and irregular time dependent loading, for uni-axial as well as multi-axial stress conditions
  • knows how stress-based analysis can be extended to the strain-based approach
  • can derive and knows how to interpret the corresponding material properties, and knows when and how to apply this technique for the assessment of the lifetime of a mechanical component
  • understands the basic principles of damage tolerant design, and knows how to apply the theoretical principles of linear fracture mechanics in this context.

Finally, in the context of mechanical design, the student

  • knows how to apply the principles of strength-load interference
  • has insight in the meaning of the concept ‘reliability index’ and knows how this concept can be generalized in a more generic mechanical design context with multiple design parameters
  • knows how reliability can be integrated in a design based on numerical simulation techniques and knows the principles of analytical as well as sampling strategies to estimate the reliability index
  • can critically assess the application of these approaches for a specific design problem
  • knows how these approaches can be integrated in a framework of reliability based design optimization.

Seminars - learning outcomes

After successful completion of the seminars, the student is able to determine the reliability of a design, starting from a deterministic numerical model and the definition of the variability on this model. He knows how to apply both analytical as well as sampling strategies, and can derive appropriate surrogate models for this purpose. The student is able to set up and perform an analysis that leads to a reliable and robust design, and has insight in the different steps involved in the procedure.

Previous knowledge

Basic knowledge on statistics, more specifically probability distributions and probability theory, is required.

Basic knowledge of continuum mechanics, more specifically stress conditions in materials under external loading, is required.

Identical courses

H00S0A: Betrouwbaarheid van mechanische systemen

Is included in these courses of study

Onderwijsleeractiviteiten

Reliability of Mechanical Systems: Lecture (B-KUL-H04Y2a)

2.7 ECTS : Lecture 20 Second termSecond term

Content

In this course, students are challenged to apply their knowledge on engineering mechanics in the context of reliability, focusing on design, production as well as maintenance of mechanical systems. The course covers general theoretical aspects for reliability prediction, analysis, verification and optimization in mechanical engineering:

1. General introduction to reliability: identification of factors that are important for reliability analysis

2. Basic elements of reliability: definitions, distributions, time independent and time dependent reliability models

3. System reliability: combined failure modes, serial and parallel systems, redundancy, reliability calculations based on minimal cuts and maximal paths, Markov chains and processes, modeling of systems with repair and maintenance

4. Analysis methods: FMECA, risk analysis, event and failure tree analysis

5. Reliability in design: load-strength interference, uncertainty modeling and processing techniques, reliability estimation in design, analytical prediction techniques, sampling techniques, reliability based design optimization

6. Fatigue and life time prediction: stress based fatigue analysis, strain based approach, damage tolerant design based on linear fracture mechanics and crack propagation

 

Course material

Presentation handouts; textbook

Is also included in other courses

G0L94A : Reliability of Space Systems

Reliability of Mechanical Systems: Seminars (B-KUL-H04Y3a)

0.3 ECTS : Practical 5 Second termSecond term

Content

The objective of the seminars is to illustrate how reliability analysis can have an impact on mechanical design procedures based on numerical modeling, and to give students hands-on experience with the application of state-of-the-art numerical simulation techniques in this context. During these seminar sessions, specific software is applied on a predefined numerical case study. All aspects from defining the parametric model uncertainty up to the design optimization under reliability constraints are illustrated on this case, and implemented by the student.

In a first step, the integration of probabilistic data in deterministic simulation techniques is performed. This includes the specification of the model parameters subject to variation and their quantification. The non-deterministic analysis is performed as a sampling procedure through the simulation software, the results of which are interpreted in a reliability context. The same procedure is repeated based on response surface models, focussing on accuracy and efficiency.

In a second step, an optimization study is performed. This is done first in a deterministic sense, after which the reliability of the optimized design is evaluated. Finally, a reliability based design optimization is performed making use of FORM approximations, and validated based on a sampling strategy.

Course material

Tutorial

Format: more information

The seminars focus on the application of reliability assessment methods in the framework of mechanical design using numerical simulation techniques. More specifically, the students apply state-of-the-art software tools for non-deterministic finite element analysis. The students are expected to implement the provided case study in a computer session, and to summarize their observations and results in a short report.

Evaluatieactiviteiten

Evaluation: Reliability of Mechanical Systems (B-KUL-H24Y2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

H04Y2a Reliability of Mechanical Systems: Lectures (2.7 sp)

  • During the exam, the student is expected to either derive and/or describe a specific part of the course material, or to apply one of the discussed techniques on a problem. Students are allowed to bring an own, hand-written formularium to the exam. It is maximal 1 A4 (recto-verso) and contains only mathematical equations (no words, text or graphs).

H04Y3a Reliability of Mechanical Systems: Seminars (0.3 sp)

  • The students have to be present during the two seminar sessions. Students are evaluated based on their report of the assignment. Students who cannot attend a seminar session, should contact the coordinator prior to the seminars such that an alternative arrangement can be made. Absence from the seminar without notification will result in a score NA.

Information about retaking exams

In case of a second exam chance, the students have the option to retake the exam as described for the first chance, or to replace it with an assignment (review + presentation of recent scientific paper(s)). In case the second option is selected, the student should contact the coordinator at the moment the examination schedule is announced in order to obtain this assignment.

In case of NA or fail on the seminar part in the first exam period, the seminar will be re-evaluated based on a report of an individual assignment. The student should contact the coordinator at the moment the examination schedule is announced in order to obtain this assignment.

ECTS Turbomachinery, Part 2 (B-KUL-H04Y6A)

3 ECTS English 20 Second termSecond term

Aims

Offering an area in which fluid mechanics are the driving force in the detailed study of turbomachines. Improving integrated thinking and making the applications understandable by pointing out and using other disciplines. 

Previous knowledge

Basic knowledge of Turbomachines and Aerodynamics. 

Is included in these courses of study

Onderwijsleeractiviteiten

Turbomachinery, Part 2 (B-KUL-H04Y6a)

3 ECTS : Lecture 20 Second termSecond term

Evaluatieactiviteiten

Evaluation: Turbomachinery, Part 2 (B-KUL-H24Y6a)

Type : Exam during the examination period
Description of evaluation : Oral

ECTS Turbulence (B-KUL-H04Y7A)

3 ECTS English 25 First termFirst term

Aims

The student is able to explain the physical phenomena which play a role in turbulent flows, and can give an overview of the most important simulation techniques, and analytical tools for the description of turbulence. The student comprehends the constraints and difficulties related to these techniques, and is able to judge their usefulness on a case-by-case basis. Finally, the student is able to grasp scientific literature on turbulence, and can make a useful selection for self-instruction.

Previous knowledge

Good knowledge of fluid mechanics, and numerical modelling

Is included in these courses of study

Onderwijsleeractiviteiten

Turbulence: Theory Lecture (B-KUL-H04Y7a)

2.7 ECTS : Lecture 20 First termFirst term

Content

This course focuses on the physical aspects of turbulence, and turbulent flows. Consequences for the description and simulation of turbulence are comprehensively discussed. Following elements are included:

  • Origin of turbulence, properties, chaos
  • Equations for fluid flow, vorticity equations
  • Statistical description, correlations and spectra, averaged flow equations 
  • Turbulence at high Reynolds numbers: isotropy, equilibrium theory, K41 theory, intermittency
  • Anisotropy
  • Free shear flows, mixing layers, jets, wakes
  • Boundary-layer turbulence, law of the wall 
  • Simulation of turbulent flows: DNS, LES, RANS, DES
  • Turbulence modelling for RANS, LES, DES

Turbulence: Practice (B-KUL-H04Y8a)

0.3 ECTS : Practical 5 First termFirst term

Content

The tutorial sessions focus on the study of contemporary literature on turbulent flows. Students and teacher together look into a number of publications in the current annual of top scientific journals, and critically discuss their quality and implications. Next to that, students individually start the preparation of a review of a recent paper, which is selected in agreement with the instructor. 

Evaluatieactiviteiten

Evaluation: Turbulence (B-KUL-H24Y7a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Reference work

Explanation

The exam is partially a classical open-book exam, with questions on the subject of turbulence. Next to that, students discuss their review of a recent scientific paper, which will be selected in agreement with the instructor during the tutorial sessions of this course.

ECTS Aircraft Engines (B-KUL-H04Z8A)

5 ECTS English 39 First termFirst term

Aims

where : ULB (Brussels, Campus Sobosch, building L)

  • Objectives: To acquire a scientific in-depth knowledge of the operation of gas turbines, turbo jet engines, turbo propulsors and their main components.
  • Attainment targets and examination requirements: Understand and explain the theoretical approaches based on the engineering sciences acquired in the prior training. Applying the theory to numerical problems, knowledge of the quantities and units and exploitation of the working documents and information provided by the constructors.

 

Is included in these courses of study

Onderwijsleeractiviteiten

Aircraft Engines: Lecture (B-KUL-H04Z8a)

4.19 ECTS : Lecture 27 First termFirst term

Content

Thermodynamic study of turbo engines, performance and optimizations, areas  of use, future developments.   Operation of the parts as elements of the turbo engine, inlets, compressors, combustion chambers,  turbines  , exhausts.   Problems that these parts pose both when flying and   in maintenance  and service life. The  operating points and operating curves of engines, monitoring, control by  the pilot, the fuel regulators.

Aircraft Engines: Laboratory Sessions (B-KUL-H04Z9a)

0.81 ECTS : Practical 12 First termFirst term

Content

See Lecture.

Evaluatieactiviteiten

Evaluation: Aircraft Engines (B-KUL-H24Z8a)

Type : Exam during the examination period
Description of evaluation : Oral

ECTS Capita selecta ingenieurswetenschappen I.1. (Athens / Summer Course) (B-KUL-H05U5A)

3 studiepunten Nederlands 30 Eerste semesterEerste semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

 

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen I.1. (Athens / Summer Course) (B-KUL-H05U5a)

3 studiepunten : College 30 Eerste semesterEerste semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen I.1. (Athens / Summer Course) (B-KUL-H25U5a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.

Toelichting bij herkansen

 

ECTS Capita selecta ingenieurswetenschappen I.2. (Athens / Summer Course) (B-KUL-H05U6A)

3 studiepunten Nederlands 30 Tweede semesterTweede semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen I.2. (Athens / Summer Course) (B-KUL-H05U6a)

3 studiepunten : College 30 Tweede semesterTweede semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen I.2. (Athens / Summer Course) (B-KUL-H25U6a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.

Toelichting bij herkansen

 

ECTS Capita selecta ingenieurswetenschappen II.2. (Athens / Summer Course) (B-KUL-H05U7A)

3 studiepunten Nederlands 30 Tweede semesterTweede semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

 

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen II.2. (Athens / Summer Course) (B-KUL-H05U7a)

3 studiepunten : College 30 Tweede semesterTweede semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen II.2. (Athens / Summer Course) (B-KUL-H25U7a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.

Toelichting bij herkansen

 

ECTS Dutch Language and Cultures (B-KUL-H06U6A)

3 ECTS English 40 Second termSecond term Cannot be taken as part of an examination contract
De Wachter Lieve (coordinator) |  N. |  De Wachter Lieve (substitute) |  Van Aken Stef (cooperator)

Aims

The main aim of this course is to help students acquire basic communicative skills in Dutch (level A1 of the Common European Framework). The course deals with the basic grammar notions and language functions and aims at the mastering of approximately 800 highly frequent words of Dutch. A lot of attention goes to culture with various lectures about Belgium. The course provides extensive practice in listening, reading, speaking and writing.

Onderwijsleeractiviteiten

Dutch Language and Cultures (B-KUL-H06U6a)

3 ECTS : Lecture 40 Second termSecond term
N. |  De Wachter Lieve (substitute) |  Van Aken Stef (cooperator)

Course material

R. Devos en H. Fraeters, Vanzelfsprekend, Leuven (Acco), 2008. The multimedia course materials 'Vanzelfsprekend' offer video, audio CDs, texts and exercises, very frequently used language functions and approximately 800 highly frequent Dutch words. The material also includes a lot of cultural information on Belgium and Flanders.

Evaluatieactiviteiten

Evaluation: Dutch Language and Cultures (B-KUL-H26U6a)

Type : Exam outside of the normal examination period

Explanation

There will be a test (writing, speaking and reading) at the end of the course as well as a number of assignments during the course. The students will also be asked to answer questions on cultural aspects, based on the attendance of two compulsory lectures on Dutch Language and Belgian Culture.

ECTS Advanced Robot Control Systems (B-KUL-H06U9B)

6 ECTS English 75 First termFirst term Cannot be taken as part of an examination contract

Aims

Students will learn what are the fundamental components of advanced robot control systems, and how the robot must/can interact with its environment, and with the task it has to perform.
Students will achieve insight in what are solved problems, and where the tough research and innovation challenges lie, in the various complementary aspects of an advanced robot control system: kinematics, control, estimation, modelling, perception, and systems-level software engineering.
Students will make their own "robot skill", to let a robot execute a task, or rather, to let it coordinate the execution of several tasks at the same time. A variety of platforms will be made available (mobile robots, serial arms, legged robots) with an embedded Linux computer as their "brain".

Previous knowledge

As a baseline, this course expects students to be familiar with beginning Master-level basics of engineering systems: control theory, kinematics, dynamics, programming, probability theory. Students who have successfully finished the "Embedded Control Systems" course are eligible. Other students are welcome to reach out to the course organizers to discuss whether their expertise (eg in computer vision, in Linux, programming in C, and usage of the Git source code revision system) is sufficient to take this course. Electrical Engineering students, in particular, are encouraged to reach out to the lecturers and discuss their participatation in the course.

Order of Enrolment



(SIMULTANEOUS(H04P5A) AND ( FLEXIBLE(H04X3A ) OR FLEXIBLE(H04X3B ) )) OR ( SIMULTANEOUS(H00R9A) AND ( FLEXIBLE(H00S3A) OR FLEXIBLE(H00S4A ) ) )


H04X3AH04X3A : Control Theory
H04X3BH04X3B : Systems and Control Theory
H00S3AH00S3A : Regeltechniek
H00S4AH00S4A : Systeemanalyse en regeltechniek
H04P5AH04P5A : Embedded Control Systems
H00R9AH00R9A : Embedded Control Systems

Is included in these courses of study

Onderwijsleeractiviteiten

Advanced Robot Control Systems: Lecture (B-KUL-H06U9a)

2 ECTS : Lecture 15 First termFirst term

Content

The following aspects of robot systems are introduced: kinematics and dynamics, control, task and motion specification, sensor-based world perception and task execution monitoring. A system-level insight is emphasised.
This course is organized as guided self study: there are only a handful of lectures in class, and for the rest of the course the students work (individually) on a project of their own choice. That project is chosen after consulting the lecturers. The students can opt for a rather theoretical course (discussing papers), or for a software project (studying a concrete robotics algorithm and implementing it in simulation or in an existing robot). However, all students will have to follow two hands-on sessions, on a real robot system.

Course material

The lecturers provide some partial lecture notes, that each student will have to complement with literature searches, focused on the specific topics of the chosen project. Students should give a critical evaluation of the information resources that they use in each of the interactive sessions.

Format: more information

During the project, each student is expected to interact with the lecturers and other students during the lectures, on the course's mailing list, or by requesting individual meetings and/or relevant literature. In those interactions, students explain the material that has been prepared, and critically discuss it with the lecturers and other students. Students get ample and immediate feedback, in order to accelerate their learning, and to prevent surprises in the evaluation.

Advanced Robot Control Systems: Projectwork (B-KUL-H06V0a)

4 ECTS : Assignment 60 First termFirst term

Evaluatieactiviteiten

Evaluation: Advanced Robot Control Systems (B-KUL-H26U9b)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Paper/Project, Presentation, Participation during contact hours, Take-Home
Type of questions : Open questions
Learning material : Course material, Reference work

ECTS Safety of Chemical and Biological Products and of Chemical Processes (B-KUL-H08K0A)

4 ECTS English 42 Second termSecond term

Aims

General aim of the course: 
1.       Identify and judge risks with respect to your own work/the work of the people you supervise when working in the chemical industry or when designing    products in which chemicals play an important role.
2.       To determine the necessary measures to exclude or to reduce risks to an acceptable level.
 
Specific aims: 
The student can identify and assess hazards of chemical and biological products, separately and in the context of a process.
The student understands the hazard vectors of chemical and biological products.
The student can retrieve information on the hazards of products, e.g., from databases, from legal entities.
The student understands and can interpret the information on hazardous products (e.g., (e)SDS) .
The student knows the classification and labeling of chemical and biological products.
The student knows the principles of REACH.
The students knows the differences between chemical and biological product safety.
The student knows different methods for risk analysis (e.g., HAZOP, QRA) and risk prevention (e.g., LOPA) and can apply these methods to a chemical (production) process.

During seminars, practical illustration and applications are given on the content of the course and some specific aspects are worked out in further depth (e.g., extended SDS).

Is included in these courses of study

Onderwijsleeractiviteiten

Safety of Chemical Processes: Lecture (B-KUL-H08N5a)

1.5 ECTS : Lecture 11 Second termSecond term

Content

Introduction to the course: Incidents that define process safety

PART 1: Safety of chemical and biological products 

  • Intrinsic hazards of chemical products (e.g., toxicity, flammability, etc.) and biological product (e.g., pathogenicity) 
  • Classification & Labelling (e.g., CLP)
  • Preventive measures (e.g., PPE)
  • REACH for hazardous chemicals (e.g., legislation, chemical safety assessment)
  • Safety testing of (new) chemical compounds 

PART 2: Safety of Chemical Processes 

  • Basic and technical design of a process unit (Introduction on reading P&IDs)
  • Hazard evaluation and risk assessment methods: principles and examples (e.g. DOW FEI, FMEA, HAZOP)
  • Safety aspects during project engineering and execution (e.g., safety functions, prevention and mitigation (LOPA), safety integrity level (SIL))

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Presentation slides.

Safety of Chemical Processes: Seminar (B-KUL-H08N6a)

0.5 ECTS : Practical 10 Second termSecond term

Content

During the seminars, practical illustrations and applications are given in relation the course lecture. Part of the seminars are given at a company. A company visit will be organized (typically 1-day visit). 

Topics related to process safety are, e.g., sensors and analyzers in a safety environment, process safety and project engineering illustrations at a plant site, design of pressure relief devices.

If, for reasons of force majeure, the company visit can not be organized. The seminars will organized online or on the campus.

 

Course material

Slides.

Safety of Chemical and Biological Products: Lecture (B-KUL-H08K1a)

1.5 ECTS : Lecture 11 Second termSecond term

Content

Introduction to the course: Incidents that define process safety

PART 1: Safety of chemical and biological products 

  • Intrinsic hazards of chemical products (e.g., toxicity, flammability, etc.) and biological product (e.g., pathogenicity) 
  • Classification & Labelling (e.g., CLP)
  • Preventive measures (e.g., PPE)
  • REACH for hazardous chemicals (e.g., legislation, chemical safety assessment)
  • Safety testing of (new) chemical compounds 

PART 2: Safety of Chemical Processes 

  • Basic and technical design of a process unit (Introduction on reading P&IDs)
  • Hazard evaluation and risk assessment methods: principles and examples (e.g. DOW FEI, FMEA, HAZOP)
  • Safety aspects during project engineering and execution (e.g., safety functions, prevention and mitigation (LOPA), safety integrity level (SIL))

Course material

Slides and notes with the slides are available via Toledo.

Safety of Chemical and Biological Products: Seminar (B-KUL-H08P3a)

0.5 ECTS : Practical 10 Second termSecond term

Content

During the seminars, practical illustrations and applications are given in relation the course lecture and more in-depth information is given on particular aspects of chemical product safety.

Part of the seminars are given at a company. A company visit will be organized (typically 1-day visit). 

Topics related to product safety are chemical safety assessment & extended safety data sheets, classification and labelling of mixtures (including testing methods), industrial hygiene, occupational medicine.   

If, for reasons of force majeure, a company visit is not possible. Seminars will be organised online or on the campus. 

Evaluatieactiviteiten

Evaluation: Safety of Chemical and Biological Products and of Chemical Processes (B-KUL-H28K0a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project

Explanation

The final grade of the course consists out of two parts. One part evaluates the course content on product safety (PART 1 of the course) and one part evaluates the course content on process safety (PART 2 of the course). For the evaluation of product safety, each student prepares a report which is handed in before the exam period. For the evaluation on process safety, the student participates to the written exam during the regular exam period. This written exam is an open book exam, during which the student may use his/her course material, information on the specific case study/process related to the report, and personal notes with the course. 

The product safety assignment counts for 40% (8 out of 20) of the final score. The written exam on process safety counts for 60% (12 out of 20) of the final score. The scores of the report and the written exam are summed up to give the final score. 

It is mandatory to participate in both exam parts to pass the course. Students who submit their assignment too late without valid reason (doctor certificate, or approval by the course responsible for any other reason) are excluded for the exam.

Information about retaking exams

Students that have to take a second exam chance will only be evaluated by a written exam (open book), but this exam will now include both product and process safety questions.

ECTS Introduction to Safety Engineering (B-KUL-H08N0A)

3 ECTS English 30 First termFirst term

Aims

Historic and recent incidents in society and in the industry indicate that awareness and knowledge of safety should be raised. This course offers a treatise of safety from a societal perspective as well as from an industrial perspective with a practical focus on the design and maintenance part.

The aims of the course are as follows.

  • The students knows orders of magnitude related to (catastrophic) incidents and some important root causes
  • The student can define the vocabulary related safety and risk
  • The student understands the main principles of risk perception
  • The student can define and describe safety in a concise and extended way including the drawbacks.
  • The student understands the difference between safety and security and can elaborate on the latter.
  • The student knows the risks analysis techniques
  • The student can define inherent safe design
  • The student can define business continuity and can explain the concept
  • The student understands the scoping and the main principles of the Seveso directive
  • The student understands process safety and the different pillars of the management thereof
  • The students knows the principal causes of some historical incidents
  • The student can define human and organizational factors as well as human performance
  • The student is able to conduct a risk assessment on a given system and is aware of and can formulate the drawbacks of the process.
  • The student is able to understand the application of safety in the lifecycle of an installation with a focus on the design and maintenance part.
  • The student will create a build-in safety reflex in the actual and future activities in the individual, professional and societal context.

Onderwijsleeractiviteiten

General Introduction to Safety Engineering: Lectures (B-KUL-H08N1a)

2.4 ECTS : Lecture 18 First termFirst term

Content

Some important major accidents in the process industries are used as starting point to prove the importance of safety engineering and as a starting point to explain the principles of the international regulations (e.g. Seveso directive) and risk assessment methods.

Topics addressed in this part are, e.g.,

  • Hazard versus risk
  • Process safety versus security
  • Principles of risk perception
  • Risk analysis techniques (FMEA, HAZOP, …)
  • Inherent safe design
  • Process safety versus Business continuity
  • Scoping and principles of the Seveso directive
  • Pillars of process safety management
  • Root causes of some historical incidents
  • Role of human and organizational factors, and human performance

Course material

Course material – handouts and selected articles

General Introduction to Safety Engineering: Seminar (B-KUL-H08N2a)

0.6 ECTS : Practical 12 First termFirst term

Content

This part of the course focusses on “safety in a maintenance perspective”.

In a series of guest lectures by industrial experts, several topics related to safety and maintenance are addressed.

E.g.,

  • Instrumental safety in the process industry
  • Safety in the chips machinery industry: Process and machine safety in the loop
  • Material selection and safety: real life cases

Course material

handouts and selected articles

 

Evaluatieactiviteiten

Evaluation: Introduction to Safety Engineering (B-KUL-H28N0a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project, Participation during contact hours

Explanation

Part 1 (Lectures): Written exam during exam period. Closed book.

Part 2 (Seminars): Brief paper writing (3 pages). Details are communicated during classes.

It is mandatory to participate in both exam parts to pass the course, and the student has to pass on both exam parts to pass on the course.

ECTS Safety Aspects of Industrial Installations (B-KUL-H08P2A)

4 ECTS English 42 Second termSecond term Cannot be taken as part of an examination contract
Bernaerts Kristel (coordinator) |  Brouwers Bert |  Vanwynsberghe Frank |  N.

Aims

The aim is to create insight in the diverse technical safety problems in industry in order to allow the safety engineer to recognize the risks and to take the necessary measures to control them. Special attention  is paid to thermal, mechanical and electrical installations.

In the part on mechanical installations the aim is to  make students familiar with the basic principles of safety of mechanical systems including road transportation sytems and  measures to reduce noise and vibration exposure in machinery. 

Confront students with real life cases, give them the opportunity to make a critical evaluation and go into discussion with different stakeholders. 

Responsables are offered the opportunity to gain a better insight in the danger linked with the use of electrical energy. It is important to be able to recognize the potential risks and to trigger the vital countermeasures. 

The student is expected to understand and master the technical operation of the different thermal components and their associated safety features mentioned above in order to identify and implement the prescribed regulatory safety requirements (and additional protective devices if necessary) in a concrete industrial environment.

 

Onderwijsleeractiviteiten

Safety Aspects of Mechanical Installations: Lecture (B-KUL-H08N7a)

1 ECTS : Lecture 8 Second termSecond term

Content

The following topics are covered in 4 lectures:

  • Machinery safety: risks, safety measures, international guidelines,standards and norms
  • Safe use of work equipment in the workplace
  • Selected other topics
    • Structural metalwork
    • Pressure equipment
    • Link mechanical safety to explosion safety
    • Physical agents: Noise
    • Physical agents: Vibration

Safety Aspects of Mechanical Installations: Seminar (B-KUL-H08N8a)

0.3 ECTS : Practical 6 Second termSecond term

Content

Seminar presentation, interactive classroom workshop. Hands-on risk assessment seminar in machinery lab.

Safety Aspects of Electrical Installations: Lecture (B-KUL-H05O5a)

1 ECTS : Lecture 8 Second termSecond term

Content

Electricity has a widely spread use in industry as well as in daily life. The impact of electricity on persons, livestock and property can be very important.
The courses go into full consideration of the dangers linked with the use of electrical energy. The prevailing laws (AREI) and standards are used as a guideline for the overview, concerning as well the impact on the human body as well as the impact on production facilities, ....
The scope and the meaning of the used teminology (earthing, protections, IP-grades, transformers, isolation) are explained. The impact on the human body and the meaning of the safety-curve is illustrated.
Emphasis is laid on the protection against direct and indirect contact and the different authorized earthing-systems (TT, IT, TN).
An important item considers the work environment responsabilities, which also covers organizational requirements. 

Course material

The course is available on toledo

Language of instruction: more information

College in english

Safety Aspects of Electrical Installations: Seminars (B-KUL-H05O8a)

0.3 ECTS : Practical 6 Second termSecond term

Content

In the seminars the application in practise of electrical safety-rules for electrical distribution-systems is illustrated by means of presentation of in-use equipment and used installation systems in a chemical plant. A second emphasis is lead on the application in an explosion hazard environment.  

Course material

Course online on toledo

Language of instruction: more information

Seminar in english

Format: more information

Company visit - Traditional lecture

Safety Aspects of Thermal Installations: Lecture (B-KUL-H05O7a)

1.1 ECTS : Lecture 8 Second termSecond term
N.

Content

The syllabus gives an overview of different thermal installations, each with their specific safety hazards and protection measures. The following thermal equipment is discussed: boilers and firing systems, steam generators, turbines, power stations, fuel handling and storage facilities and refrigerating plants. A brief description of the operation of each system is given but the  course is particularly focused on the technical aspects of safety controls, safety fittings and protective devices, as well as the regulatory code requirements. The latter are illustrated within the national and European context. Special attention is drawn to the application of the pressure vessel directive and the associated European harmonized standards.
 
 

Safety Aspects of Thermal Installations: Seminars (B-KUL-H05P1a)

0.3 ECTS : Practical 6 Second termSecond term
N.

Content

The content of the  lectures is further completed with a visit to a conventional power plant where the different course objectives are illustrated in a real life situation.  

Evaluatieactiviteiten

Evaluation: Safety Aspects of Industrial Installations (B-KUL-H28P2a)

Type : Exam during the examination period
Description of evaluation : Oral

Explanation

The evaluation covers the three parts of course: thermal, electrical and mechanical installations. The exam is a closed book exam.

The use of a calculator on the exam is allowed.

Each course part is evaluated and the arithmetic mean is taken to compute the final course score. Except, if you obtain at least one partial score below 8/20 (< 8/20), you will not pass for the full course and you will be graded below 10/20 (< 10/20).

As part of this course, also company/site visits are organized. These company/site visits are an integral part of the course and participation is mandatory. In case of non-participation in a company/site visit without a valid reason (doctor certificate, or approval by the course responsible for any other reason), 3 (three) points are subtracted from your score obtained for the exam.
Examples:
- You obtain 14/20 on the exam but you did not participate in 1 company visit. Your final score will be 11/20.
- You obtain 14/20 on the exam but you did not participate in 2 company visits. Your final score will be 8/20.
 

Information about retaking exams

For the re-take of the course exam, you only have to retake the course parts for which you did not pass.

ECTS Fluïdummechanica (B-KUL-H08W4A)

3 studiepunten Nederlands 28 Eerste semesterEerste semester

Doelstellingen

Inzicht verschaffen in de krachtwerkingen uitgeoefend door stilstaande fluida en in de transportverschijnselen die optreden in de stromingen van fluïda. Begrijpen, kunnen analyseren en kunnen uitleggen hoe deze fenomenen een plaats innemen in de natuur en in de technologie. Vaardigheid bijbrengen in het berekenen van fluïdummechanische processen.

*

De studenten aanleren hoe typische vraagstukken in de fluïdummmechanica worden aangepakt en opgelost.

Begintermen

Basiskennis van toegepaste mechanica, thermodynamica, algemene natuurkunde (niet elektrisch deel) en analyse: integraal- en differentiaalrekenen.

Volgtijdelijkheidsvoorwaarden



(GELIJKTIJDIG (H01N2A) OF GELIJKTIJDIG (X0C81A))


H01N2AH01N2A : Energieconversiemachines en -systemen
X0C81AX0C81A : Energieconversiemachines en -systemen


Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Fluïdummechanica: hoorcollege (B-KUL-H08W4a)

2.65 studiepunten : College 20 Eerste semesterEerste semester

Inhoud

De volgende materie wordt behandeld:

  • Basisconcepten van fluïda: beschrijving en classificatie van stromingen, viscositeit.
  • Hydrostatica- Integraalformulering voor een controlevolume (herformulering van gelijkaardige vergelijkingen uit het vak “Energieconversiemachines en -systemen”) 
  • Differentiaalformuleringen voor stromingen: kinematica en dynamica van fluïda, Navier-Stokesvergelijkingen.
  • Onsamendrukbare, niet-viskeuze stromingen: Eulervergelijkingen, Bernouilli-vergelijking, potentiaalstromingen.
  • Dimensionale analyse
  • Inwendige onsamendrukbare, viskeuze stromingen: volledig ontwikkelde laminaire stromingen, turbulente stromingen doorheen leidingen (m.i.v. ladingsverliezen), meettechnieken in stromingen
  • Uitwendige onsamendrukbare stromingen: grenslaagtheorie, stromingen rond voorwerpen (drag en lift).

Studiemateriaal

Studiekost: 51-75 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Gebruik van slides en handboek: Fox, McDonald & Pritchard, "Fluid Mechanics", Wiley

Toelichting werkvorm

20 uur hoorcollege, waar een overzicht van de cursusinhoud wordt gegeven en de belangrijkste zaken worden toegelicht. De colleges volgen niet steeds letterlijk de beschikbaar gestelde teksten; soms worden extra inzichten verschaft. Aanwezigheid in de les is niet echt vereist, maar de studenten worden wel verondersteld alles te weten wat er wordt gezegd.

Fluïdummechanica: oefeningen (B-KUL-H08X0a)

0.35 studiepunten : Practicum 8 Eerste semesterEerste semester

Inhoud

Het praktisch verwerken van de theoretische concepten aangebracht in het hoorcollege, aan de hand van typische ingenieursproblemen/vraagstukken.

Studiemateriaal

 Oefeningenbundel ter beschikking gesteld vóór de oefenzittingen. Studenten worden zeer aanbevolen de oefenzittingen voor te bereiden.

Toelichting werkvorm

3 Oefenzittingen over fluïdummechanica, handelend over de volledige OLA-hoorcollege-inhoud. Op het einde van elke oefenzitting kan een korte gequoteerde oefening worden gesteld. In voorkomend geval zullen de gequoteerde oefeningen meetellen voor 5% van de deelquotering voor de oefeningen.

Evaluatieactiviteiten

Evaluatie: Fluïdummechanica (B-KUL-H28W4a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Meerkeuzevragen, Open vragen, Gesloten vragen
Leermateriaal : Cursusmateriaal, Rekenmachine, Naslagwerk, Geen

Toelichting

Het examen bestaat uit drie delen, waarvan de eerste twee delen gesloten boek zijn en het derde deel open boek. Het eerste deel bevat een aantal korte eenvoudige oefeningen op de basisprincipes van het vak en of enkele eenvoudige korte theorievragen. Het tweede deel bevat een grotere theorievraag. Het derde deel bevat een grotere oefening. Het eerste deel dient na max. 1h ingediend te worden, het tweede deel na max. 2h. Het laatste deel wordt op het eide van het examen ingediend. Een aantal van de vragen kunnen eventueel meerkeuze-onderdelen bevatten - in dat geval wordt giscorrectie toegepast voor deze onderdelen.

ECTS Warmteoverdracht (B-KUL-H08W5A)

3 studiepunten Nederlands 28 Eerste semesterEerste semester
N. |  Vetrano Maria Rosaria (plaatsvervanger)

Doelstellingen

Verruiming van kennis:
- Begrippen en thermofysische stofeigenschappen die te maken hebben met stroming van fluïda en geleiding, convectie en straling in vaste stoffen en fluïda.
- Dieper natuurkundig inzicht in de processen en in de dimensieloze grootheden achter de warmteoverdracht.
- Wiskundige formulering en oplossingen van de behoudswetten en transportvergelijkingen in vaste stoffen en fluïda.
- Herkennen en formuleren van de randvoorwaarden.
 
Aanvulling van vaardigheden:
- Kunnen opstellen van wiskundige modellen, zowel exact als mechanistisch (eerste orde benadering) voor standaard thermische processen.

- Via wiskundige formulering, eenvoudige, concrete thermische ontwerpproblemen uit een brede waaier van toepassingen kunnen oplossen (proceskunde, bouwkunde, metaalkunde, elektronica, …).

- Onderscheid kunnen maken tussen processen gelinkt aan de behoudswetten en processen gelinkt aan de transportwetten..

- Kunnen communiceren met een specialist terzake.
- Voldoende basiskennis verwerven zodat men zich door zelfstudie verder kan bekwamen in elk aspect van de thermotechnische analyse.
 
Aanvulling van attitudes:
- Open staan voor en willen begrijpen van de thermofysische processsen die zich in de natuur en de techniek afspelen.
- Kritische ingesteldheid tegenover nauwkeurigheid en aard/complexiteit van rekenmodellen voor warmteoverdracht.
- Appreciatie van het werk van grote natuurkundige wetenschappers in de warmteoverdracht.

Begintermen

Thermodynamica : energiebehoud, energiestromen, energiewisselaars,  Kunnen werken met de eerste hoofdwet.

Volgtijdelijkheidsvoorwaarden



(SOEPEL (H01N2A) OF SOEPEL (X0C81A)) EN GELIJKTIJDIG (H08W4A)


H01N2AH01N2A : Energieconversiemachines en -systemen
X0C81AX0C81A : Energieconversiemachines en -systemen
H08W4AH08W4A : Fluïdummechanica


Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Warmteoverdracht: hoorcollege (B-KUL-H08W5a)

2.65 studiepunten : College 20 Eerste semesterEerste semester
N. |  Vetrano Maria Rosaria (plaatsvervanger)

Inhoud

De onderstaande aspecten worden achtereenvolgend behandeld.

1. Inleiding tot de warmteoverdracht in de natuur en techniek, warmteoverdrachtsmodes

2. Warmteoverdracht door geleiding
-  Fundamentele begrippen: geleidingswet van Fourier, thermische transporteigenschappen
-  Stationaire warmtegeleiding: thermische weerstand, temperatuursverdeling
-  Transiënte warmtegeleiding: het half-oneindig lichaam, de symmetrische plaat
-  Praktische analyse van geleidingsproblemen
3. Warmteoverdracht door convectie
-  Inleiding, de convectieve warmteoverdrachtcoëfficiënt
-  Warmteoverdracht bij uitwendige stromingen: grenslagen
-  Warmteoverdracht bij stromingen door leidingen: ingangseffecten
-  Warmteoverdracht door natuurlijke convectie: verticale wanden
-  Praktische analyse van convectieve warmteoverdracht
4. Warmtewisselaars
-  Technologische beschrijving, types, ontwerpaspecten
-  Warmteoverdracht in warmtewisselaars, basisprocessen, keuze van fluïdum,
-  Standaard berekeningsmethoden: LMTD en NTU methoden
5. Warmteoverdracht door straling
-  Fundamentele begrippen: emissiviteit, stralingswetten van Planck en Stefan-Boltzmann
-  Straling tussen zwarte isotherme oppervlakken, vormfactoren
-  Straling tussen grijze isotherme oppervlakken, radiositeit en irradiantie
-  Praktische analyse van stralingswarmteoverdracht

 

Studiemateriaal

Studiekost: 11-25 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Er bestaat een nederlandstalige cursustekts, genaamd Warmteoverdracht, die dient om het hoorcollege te ondersteunen.  In deze tekst wordt verwezen naar meer uitvoerige engelstalige handboeken voor verdere studie.

 

Toelichting werkvorm

20 uur hoorcollege, waar een overzicht van de cursusinhoud wordt gegeven en de belangrijkste zaken worden toegelicht. 

Warmteoverdracht: oefeningen (B-KUL-H08X1a)

0.35 studiepunten : Practicum 8 Eerste semesterEerste semester
N. |  Vetrano Maria Rosaria (plaatsvervanger)

Inhoud

3 Oefenzittingen op warmteoverdracht door geleiding, convectie en straling en op warmtewisselaars.

Toelichting werkvorm

Werkzittingen in kleine groep waar "probleem oplossen" aangeleerd wordt.

Evaluatieactiviteiten

Evaluatie: Warmteoverdracht (B-KUL-H28W5a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Meerkeuzevragen, Open vragen, Gesloten vragen
Leermateriaal : Cursusmateriaal, Rekenmachine

Toelichting

Het examen bestaat uit twee delen, een oefeningendeel waarbij twee typische ingenieursproblemen moeten worden opgelost, en een meer theoretisch deel waarbij 5 à 10 (korte) inzichtsvragen worden gesteld. Gesloten vragen, open vragen of meerkeuzevragen zijn mogelijk.

Het theoriedeel is gesloten boek - alleen eenvoudige rekenmachine toegelaten (zoals door de faculteit goedgekeurd). Het oefeningendeel is open boek (in principe alle gedrukte en/of geschreven ondersteuningsmateriaal toegelaten en eenvoudige rekenmachine).

Aanvankelijk worden beide delen afzonderlijk verbeterd en gequoteerd. De puntenverdeling is in eerste instantie 50-50. Als er een klein tekort (8 of 9 op 20) is bij één van de delen (oefeningen of theorie) dan wordt het voorlopig rekenkundig gemiddelde met één punt naar beneden gepenaliseerd. Bij een groot tekort (7 of minder) wordt nog extra gepenaliseerd met één punt. Een zeer groot tekort op één van de delen (3 of minder) geeft aanleiding tot nog eens een extra penalisatie. Dezelfde redenering geldt als er tekorten zijn bij beide delen. Bovendien wordt bij deze weging ook extra aandacht besteed aan “onaanvaardbare” resultaten op een deel van het examen. Bijvoorbeeld als de student een ontoelaatbare “flater" maakt wordt extra zwaar gepenaliseerd. Als uit het antwoordenpatroon duidelijk blijkt dat de student een deel van de cursus niet heeft gestudeerd, wordt extra zwaar gepenaliseerd.

ECTS Polymer Processing (B-KUL-H09F7A)

3 ECTS English 20 Second termSecond term

Aims

The aim of the part 'polymer processing' is to provide a technical-scientifical description of the several processing units and more specifically to learn how to interfere in the different units to tune the final structure and properties of a material

Previous knowledge

For polymer processing:


- Transport phenomena part 1 (Ba)
- Transport phenomena part 2 (Ma)
- Polymers (Ba)

Is included in these courses of study

Onderwijsleeractiviteiten

Polymer Processing (B-KUL-H09F7a)

3 ECTS : Lecture 20 Second termSecond term

Content

Chapter 1: Overview of widely used processing units
In this chapter, a description is given of the most widely used processing units for thermoplastics and thermosets, without going into detail of modelling of the different processes.
Chapter 2: Material selection
When selecting a polymer for a specific process, some aspects have to be taken into account: rheological parameters, transitions temperatures, thermodynamic behavior… This chapter aims at understanding the processing-properties relationship. Since flow conditions during processing are closely related to the material parameters, fundamental understanding of these material parameters is crucial.
Chapter 3: Extrusion
In this chapter, one of the most important processing techniques, namely extrusins, will be discussed in detail. This chapters aims on the one hand, at mathematical modelling of the different extrusion zones and on the other hand at designing nozzles and identifying extrusion instabilities.
Chapter 4: Injection molding
This chapter treats the most important discontinuous technique, namely injection molding. The cycle is discussed in detail after which attention is given to modelling of the filling of the mould. Mould design is therefore an important aspect and the link with numerical simulations is highlighted. Last, frequently made injection molding errors are discussed and solved.
Chapter 5: Shape stabilisationThe solidification process of a shaped material is very important since the final material properties are formed in this stage. The stress will be on the crystallisation phenomena.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Lecture notesRecommended book: "Polymer Processing and Structure Development", Wilkinson en Ryan 

Is also included in other courses

H0E82A : Polymer Processing

Evaluatieactiviteiten

Evaluation: Polymer Processing (B-KUL-H29F7a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, Reference work

ECTS Image Analysis and Understanding (B-KUL-H09J2A)

6 ECTS English 56 Second termSecond term
Tuytelaars Tinne (coordinator) |  Tuytelaars Tinne |  N. |  Proesmans Marc (substitute)

Aims

Conceptual knowledge of basic algorithms for the processing and interpretation of images.

Previous knowledge

The student must have a basic knowledge of algebra, analysis, geometry, signal processing, pattern recognition and basic notions of machine learning

Is included in these courses of study

Onderwijsleeractiviteiten

Image Analysis and Understanding: Exercises and Practicals (B-KUL-H09I2a)

1.17 ECTS : Practical 20 Second termSecond term
Tuytelaars Tinne |  N. |  Proesmans Marc (substitute)

Content

The exercises and practical sessions elaborate the course knowledge.

Course material

Exercise material is distributed during the sessions or available from Toledo.

Language of instruction: more information

 

 

Format: more information

Guided exercises, partially computer-supported. 

Image Analysis and Understanding: Lecture (B-KUL-H09J2a)

4.83 ECTS : Lecture 36 Second termSecond term
Tuytelaars Tinne |  N. |  Proesmans Marc (substitute)

Content

In this course, the basics of  image processing are acquired and combined with pattern recognition into algorithms for image interpretation. 

Part I: Image processing 
- recording and display 
- sampling and quantization 
- filtering and image enhancement 
- unitary transforms (2D FFT, PCA) 

Part II: Image interpretation
- surface features (color, texture) 
- optical flow and tracking 
- 3D geometry and reconstruction 
- local features and image matching 

Part III: Machine-learning based approaches 
- network architectures for image classification
- dense prediction tasks (semantic segmentation, depth estimation, pose estimation)
- object detection
- advanced topics (image generation, dealing with video, efficient implementations, new trends, ...)
 

Course material

Course notes or slides provided by the lecturers.

Language of instruction: more information

Dutch-speaking students can take the exam in Dutch if they want to.

Format: more information

18 lecture classes: roughly 1/3 on image processing, 1/3 on image interpretation, and 1/3 on machine-learning based methods.

Evaluatieactiviteiten

Evaluation: Image Analysis and Understanding (B-KUL-H29J2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Multiple choice
Learning material : None

Explanation

Students get a set of multiple choice questions.
After a short preparation, they are asked to explain and motivate their choices during the oral exam, sometimes followed by a short discussion.
Note that the evaluation is mostly based on the given explanation - just checking the right box is not enough.
There's no correction for guessing.

 

 

ECTS Engineering & Entrepreneurship (B-KUL-H09P4A)

6 ECTS English 69 Second termSecond term Cannot be taken as part of an examination contract

Aims

The course explains and illustrates the role of leadership and technology in the entrepreneurial process.

  • The student can explain the key role of technology and engineering in entrepreneurship
  • The student is able to take advantage of market opportunities by planning, organizing, and employing several types of resources.
  • The student is able to clarify the role of and generate a business plan for an existing as well as a new to start-up company.
  • The student can clarify how different units within the company interact and how the company should position itself within a given market, based on the participation during the business games and the testimonies by the entrepreneurs to.
  • The student can explain the product development cycle and more specifically the creative phase following the need recognition and problem formulation stages. In this phase design concepts need to be conceived and assessed.
  • The student can indicate the techniques of Business Strategic Dialogues and the role of leadership in this.

Previous knowledge

Students are not allowed to follow the course H09Q1A ‘Leadership and Strategic Management’ (3 ECTS) nor H04V2A ‘Ontwerpmethodologieën’ (6 ECTS) when they subscribe this course.

Is included in these courses of study

Onderwijsleeractiviteiten

Business Simulations (B-KUL-H09P5a)

1.5 ECTS : Assignment 30 Second termSecond term

Content

The ola consists of two games:

 

  • concurrent engineering game: this business simulation game makes students familiar with the important influence of organizational structures on the performance of project teams with parallel, interacting task responsibilities. The exercise consists of a 4 hours competitive product development effort set in a real life production facility.
  • business game: during this three day business game students have to organize themselves in teams or companies. They create a vision, set goals for their company, translate them in the normal activities of a company: hiring people, buying raw material, investing in machines, price setting, marketing, selling and delivering the products, production planning, etc. At the end of the game during a formal session what they hoped to reach and what has been reached is discussed.

Course material

Handouts made available to the students  before the start of the games.

Format: more information

Interactive business simulation games: presence is obligatory.

Is also included in other courses

H09Q1A : Leadership and Strategic Management

Strategic Management (B-KUL-H09P8a)

1.5 ECTS : Lecture 15 Second termSecond term

Content

1. Leadership:How to define,types of profiles(inspirational,organisational),style
2. Strategic Dialogues: Vision and Strategy as a tool to aline teams and lead the team to common goals.Technique of defining actual situation against strategic desired position (Ist/Soll) and definition of action programs to get there.
3. What to do in global crises: short time survival to reach long term objectives (use of operational KPI's)
4. Culture of enterpreneurship and commitment
5. Why?(reason to exist),how?(values),what?(action plans)
6. How evaluate (choose) the team and reward it?
7. Priority setting (people,profit,planet?)
8. Translation and communication of vision/strategy to affiliates and workfloor
9. Role of innovation10. Case study of a company in Belgium

Course material

Handbook, texts and presentations

Format: more information

Mixture of classes and seminars

Is also included in other courses

H09Q1A : Leadership and Strategic Management

Creativity and Decision Making for Product Development (B-KUL-H0T37a)

2 ECTS : Lecture 12 Second termSecond term

Content

1. Characteristics of design activities and systematic design procedures

2. Creativity methods: including

  • Lateral thinking
  • Brainstorming
  • Synectics
  • Biomimicry, biologically inspired design
  • Combinatorial concept generation
  • Morphological analysis

      and creativity quantification

3.   Design by Analogy and Systematic biologically inspired design

4.  Theory of Inventive Problem Solving :TIPS / TRIZ

5.  Open innovation and lead users

6.  Design evaluation methods and decision theory

  • Design axioms
  • Decision matrices
  • Decision theory
  • Multi-criteria decision making

Course material

Handouts and selected articles

Technology & Entrepreneurship: Case Studies (B-KUL-H0T38a)

1 ECTS : Lecture 12 Second termSecond term

Content

Testimonies on the role of engineering and technology in the start-up of technology spin-offs. Leading entrepreneurs of technology spin-off companies will be invited to contribute to this seminar lectures.

Course material

Byers, T.H. Dorf, R.C., & Nelson, A.J. (2010). Technology ventures: From idea to enterprise (3rd ed.). New York: McGraw-Hill.

Handouts of the presentations.

Evaluatieactiviteiten

Evaluation: Engineering & Entrepreneurship (B-KUL-H29P4a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project, Presentation, Participation during contact hours
Type of questions : Open questions

Explanation

 

  • ‘Business Simulations’: continuous assessment based on participation
  • ‘Strategic Management’ and ‘Creativity and decision making for product development’: written exam during the exam session, open questions
  • ‘Technology & Entrepreneurship: case studies’: short paper on a case study
  • One of the business games takes place during three consecutive days. This game is graded based on participation.

Not participating in one of the diffferent parts results in failing this course. There is no possibility of taking a second exam session for the Business Simulations in September.

If the faculty decides that the business games cannot go ahead in their current form due to unavoidable external factors, compulsory attendance will be waived. The business games will then not be included in the assessment of this course.

 

 

 

Information about retaking exams

You cannot retake the business games in the September exam session, since they exist of continuous assessment during a large scale group event. However, you can retake the course modules ‘Strategic Management’, ‘Creativity and Decision Making for Product Development’ and ‘Technology & Entrepreneurship’.

ECTS Leadership and Strategic Management (B-KUL-H09Q1A)

3 ECTS English 45 Second termSecond term Cannot be taken as part of an examination contract
Duflou Joost (coordinator) |  Duflou Joost |  Geldof Bernard |  Joubert Johan

Aims

Students are able to apply what they have learned in OLA1 and OLA2:  define a vision, formulate a strategy and objectives, organize themselves in teams and a proper functional structure.

The student is able to analyze a situation and make the proper decisions based on valid support techniques, evaluate the consequences and act accordingly,
the student knows the techniques of Business Strategic Dialogues and the role of leadership in it,
 the student can roll out (communicate and implement) a business strategy in the whole organisation of the company- the student understands the important relation between team's (strategic) objectives,evaluation & rewarding

Previous knowledge

Basic knowledge on industrial engineering (production planning), management accounting and economics.

 

Order of Enrolment



SIMULTANEOUS(H04D9A)


H04D9AH04D9A : Psychological and Social Aspects of the Management of Organisations

Is included in these courses of study

Onderwijsleeractiviteiten

Business Simulations (B-KUL-H09P5a)

1.5 ECTS : Assignment 30 Second termSecond term

Content

The ola consists of two games:

 

  • concurrent engineering game: this business simulation game makes students familiar with the important influence of organizational structures on the performance of project teams with parallel, interacting task responsibilities. The exercise consists of a 4 hours competitive product development effort set in a real life production facility.
  • business game: during this three day business game students have to organize themselves in teams or companies. They create a vision, set goals for their company, translate them in the normal activities of a company: hiring people, buying raw material, investing in machines, price setting, marketing, selling and delivering the products, production planning, etc. At the end of the game during a formal session what they hoped to reach and what has been reached is discussed.

Course material

Handouts made available to the students  before the start of the games.

Format: more information

Interactive business simulation games: presence is obligatory.

Is also included in other courses

H09P4A : Engineering & Entrepreneurship

Strategic Management (B-KUL-H09P8a)

1.5 ECTS : Lecture 15 Second termSecond term

Content

1. Leadership:How to define,types of profiles(inspirational,organisational),style
2. Strategic Dialogues: Vision and Strategy as a tool to aline teams and lead the team to common goals.Technique of defining actual situation against strategic desired position (Ist/Soll) and definition of action programs to get there.
3. What to do in global crises: short time survival to reach long term objectives (use of operational KPI's)
4. Culture of enterpreneurship and commitment
5. Why?(reason to exist),how?(values),what?(action plans)
6. How evaluate (choose) the team and reward it?
7. Priority setting (people,profit,planet?)
8. Translation and communication of vision/strategy to affiliates and workfloor
9. Role of innovation10. Case study of a company in Belgium

Course material

Handbook, texts and presentations

Format: more information

Mixture of classes and seminars

Is also included in other courses

H09P4A : Engineering & Entrepreneurship

Evaluatieactiviteiten

Evaluation: Leadership and Strategic Management (B-KUL-H29Q1a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Presentation, Participation during contact hours
Type of questions : Open questions

Explanation

The learning activity "Strategic Management" is evaluated by means of a written exam during the exam session. The learning activity "Business Simulations" is evaluated based on cooperation and presentation at the end of the game itself.

One of the business games takes place during three consecutive days. This game is graded based on participation.  Not participating results in failing this course due to an 'incomplete' status for one of the learning activities.  There is no possibility of taking a second exam session for the Business Simulation games in September.

If, for reasons of force majeure, the faculty decides that the business games cannot go ahead in their current form, compulsory attendance will be waived. The business games will then not be included in the assessment of this course.

 

Information about retaking exams

For the learning activity on Strategic Management the exam can be retaken in the September exam period.

For  the course module on Business Simulations, due to the nature of the evaluation format that requires participation in several large scale business games, no re-examination can be organised. Failing for this module or an 'incomplete' status due to non-participation in the business games cannot be remediated without retaking the course in another academic year.

ECTS Master's Thesis (B-KUL-H09Z9A)

24 ECTS English 720 Both termsBoth terms Cannot be taken as part of an examination contract Cannot be taken as part of a credit contract
Castagne Sylvie (coordinator) |  N.

Aims

Integrating project in which the student learns to integrate and apply the amassed knowledge.

Previous knowledge

There are no specific preliminary terms.

Order of Enrolment

72

Onderwijsleeractiviteiten

Master's Thesis (B-KUL-H09Z9a)

24 ECTS : Master's thesis 720 Both termsBoth terms
N.

Content

The master's thesis contains an in-depth study of a topic from the specialization engineering programme. This study can be purely theoretical or a mixture of theory and experiment.

Evaluatieactiviteiten

Evaluation: Master's Thesis (B-KUL-H29Z9a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Paper/Project, Presentation, Participation during contact hours

Explanation

A thesis will be evaluated by a jury of at least 3 people: the promotor, the daily supervisor and or or more assessors, on the basis of three aspects.
1. The process: the work during the year (independence, critical sense, inventiveness, creativity, degree of difficulty)
2. The product: the final project and/or text (scientific contents, style, language, care, readability, structure)
3. The presentation and oral questioning (style, language, care, structure, completeness, use of time)

ECTS Dredging Technology for Mechanical Engineers (B-KUL-H0A13A)

4 ECTS English 36 First termFirst term
Vanneste Geert (coordinator) |  Fordeyn Jan |  Vanneste Geert

Aims

The course aims to provide the participants an insight in the technical, economical and sustainability aspects of dredging projects and equipment.  These aims are further detailed as below:   

  • To learn the different dredger types (equipment, working method, processes, conditions of employability including environmental measures) with special focus on the Cutter Suction Dredger (CSD), the Trailing Suction Hopper Dredger (TSHD) and the Backhoe Dredger (BHD).
  • To understand the hydraulic transport process and operating parameters.
  • To understand and evaluate the different limits of dredging production.
  • To learn to estimate the main cost components of one of the main dredger types.
  • To learn key ideas to enhance the sustainability of projects.
  • To appreciate typical mechanical engineering aspects such as maintenance and power management, and simulator setup and functioning.
  • To be able to critically apply/ understand known formulas, notions and parameters from hydraulics, general engineering ... for specific dredging applications (throughout the course)

Previous knowledge

Hydraulics/Fluid Mechanics and drives

Order of Enrolment



( FLEXIBLE(H08W4A) OR FLEXIBLE(H0H49A))


H08W4AH08W4A : Fluïdummechanica
H0H49AH0H49A : Hydraulica

Onderwijsleeractiviteiten

Dredging Technology (B-KUL-H06P6a)

2.5 ECTS : Lecture 26 First termFirst term

Content

1. Introduction to dredging

  • Dredging industry and sustainability
    • problem description
    • Involved parties & organizations
    • Impact on dredging industry
  • What is dredging / what is soil
  • Types of dredging projects & dredging equipment

 

2. Dredging equipment (TSHD, CSD, BHD)

  • Working principles and processes
  • Field of application and boundary conditions
  • Production estimation and evaluation with guided exercises
  • Sustainability CSD: primary energy suppliers
    • Impact on environment
    • Measures
  • Sustainability TSHD: turbidity
    • Impact on biodiversity
    • Measures
  • Sustainability BHD: turbidity
    • Impact on biodiversity
    • Measures

 

3. Hydraulic transport

  • Pipeline characteristic (fluid mechanics, solids effect)
  • Centrifugal pump characteristic (affinity laws, solids effect)
  • Drive characteristic (Internal combustion engines, electrical AC and DC grid)
  • Interaction of drive, pump and pipeline
  • Density, concentration and slip
  • Hydraulic production estimation and evaluation with guided exercises

 

4. Dredging projects

  • Hydraulic fills: types and activities
  • Survey activities: types and importance to dredging projects
  • Environmental monitoring

 

5. Project Acquisition

  • Sustainability aspects in projects
  • Tender handling in a dredging company
  • General pricing scheme

Course material

Handouts, either provided in hardcopy or posted on Toledo.

Recommended literature:

See handouts

Is also included in other courses

H06P6B : Dredging Technology for Civil Engineers

Specific Aspects of Dredging Technology for Mechanical Engineers (B-KUL-H0A13a)

1.5 ECTS : Lecture 10 First termFirst term

Content

1. Introduction to soil

  • Soil- rock cycle
  • Basic soil and rock types
  • Soil and rock properties
  • Soil classification & description

 

2. Power management

  • power consumers: types and characteristics
  • power generators: types and power distribution
  • power management
  • practical application on CSD and TSHD

 

3. Maintenance management

  • soil induced wear: influenced components, wear phenomena and alleviating measures
  • maintenance management: periodical, predictive, condition based, unplanned, planned, Root Cause Analysis, …
  • practical application on CSD and TSHD

 

4. Simulators

  • evolution and types of simulators
  • simulator design
  • practical application on CSD and TSHD simulator

Course material

Study material:

Handouts, either provided in hardcopy or posted on Toledo.

Recommended literature:

 

Format: more information

A visit to the CSD / TSHD simulator is foreseen

Evaluatieactiviteiten

Evaluation: Dredging Technology for Mechanical Engineers (B-KUL-H2A13a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions
Learning material : Calculator

Explanation

In the evaluation of the multiple choice part of the exam, no correction for guessing will be applied.

ECTS Virtual Product Development (B-KUL-H0A15A)

3 ECTS English 28 Second termSecond term
Castagne Sylvie (coordinator) |  Castagne Sylvie |  Vrancken Bey

Aims

1. The student knows the underlying principles of advanced modeling (CAD) and can apply these principles. These principles include innovative parametric modeling, feature modeling, modeling of complex shapes ..
2. The student can make an initial process selection for the machining of a given workpiece. Based on given constraints (material, batch size), the student can determine which processes will be required to machine the part. Students learn how to take technical machining aspects into account during product modeling. 
3. The student knows methods and procedures for CAD data exchange (transfer of data between different systems). Based on a given CAD model, the student should be able to evaluate the quality of a data transfer. 

The exercises (CAD guided sessions) are intended to guide the student to model advanced mechanical products, in order to get a quicker insight into the working principles and ways of modeling.

Previous knowledge

Basic CAD experience and knowledge of manufacturing processes.
If no basic CAD experience is available, additional exercises are requested at the start of the course. Using the guidelines, the student can easily acquire the necessary knowledge through home study.

Identical courses

H04O0A: Virtuele productontwikkeling

Onderwijsleeractiviteiten

Virtual Product Development: Lectures (B-KUL-H0A15a)

2.4 ECTS : Lecture 18 Second termSecond term

Content

The course consists of two parts:

Part I - Advanced CAD
In this section the following topics are offering:
1. Geometric modeling: mathematical description of entities
2. Modeling methods: CSG, B-rep, voxelgebaseerd, STL
3. Parametric modeling, feature modeling, associativity
4. Assembly modeling
5. Modeling with tolerances
6. Data exchange
7. Virtual reality: simulation in terms of design evaluation and virtual manufacturing
8. Integration of CAD and CAE 

Part 2 - Selection Process
1. Process selection based on shape types
2. DFM (Design for Manufacturing) process-oriented design
3. Cost estimation based on general design features 

Course material

The course text is a set of detailed slides (text provides enough to completely understand the content). This slides are available at Toledo 

Format: more information

Classical lectures! The teacher covers the material using PowerPoint presentations, supplemented by notes on the blackboard

Virtual Product Development: Exercises (B-KUL-H0A16a)

0.6 ECTS : Assignment 10 Second termSecond term

Content

There are four sessions offered
1. Introduction to CAD modeling
2. Parametric modeling, feature based modeling 
3. Modeling of complex shaped surfaces
4. Automation of CAD systems

Course material

Guiding texts are made available before each session. They are also available on Toledo

Format: more information

Students work independently given exercise, using the available CAD system. An assistant was present to ask when performing these exercises to answer.

Evaluatieactiviteiten

Evaluation: Virtual Product Development (B-KUL-H2A15a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions, Closed questions
Learning material : Computer

Explanation

The evaluation consists in a report and an examination (with presentation).

Based on a given product (to be selected by themselves), the student must make a CAD-model and for a particular part of the product, a process selection has to be done. The result of this work is a CAD model, a short report (5 to 10 pages) and a presentation.

An individual report is submitted (20%), with the results and a discussion about the design project.

The oral examination (80%) is an individual discussion based on the project.


At the exam (during the exam period), the student presents his work using a presentation. The student is evaluated on the following aspects:

*/ Does the student knows the modeling principles and has he applied them to the selected part in a correct and proper way

*/ Knows the student how to make a correct and proper initial process selection for one of the components

*/ Can the student generate in a proper way CAD data exchange files

*/ Can he evaluate the quality of these files and does he understand the differences (and also performance) of the different standards used for data exchange

*/ Can the student link the content of the course to the project work

ECTS Two-Phase Flow: Theory and Applications (B-KUL-H0A21A)

3 ECTS English 23 First termFirst term

Aims

  • Based on a description of the physical phenomena occurring, the students develop models and build up knowledge on the validity of empirical correlations. 
  • Through a critical view on existing correlations, the students choose the right empirical correlations for a real design problem, motivate their choice, being aware of the limitations, and using the course text and the literature.

Previous knowledge

Basics of heat transfer (conduction, convection and radiation) and fluid flow.

Identical courses

H04Y9A: Tweefasenstroming: theorie en toepassingen

Is included in these courses of study

Onderwijsleeractiviteiten

Two-Phase Flow: Theory and Applications (B-KUL-H0A21a)

3 ECTS : Lecture 23 First termFirst term

Content

This course consists of five parts:

  • Introduction to two-phase flows: 
  • Solid-liquid and gas –liquid flows 
  • Fundamentals of pool boiling and forced boiling
  • Atomization and sprays:
  • Two-phase flow application 

Course material

Course text and reference book
Slides on Toledo (website)
Explanation on Blackboard

Format: more information

Guided self-education: independently processing the course text with often occurring guidance sessions on a certain part of the course, in which specific aspects, questions or problems will be dealt with.

Evaluatieactiviteiten

Evaluation: Two-Phase Flow: Theory and Applications (B-KUL-H2A21a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Report, Presentation
Type of questions : Open questions
Learning material : Computer

Explanation

The grading  consists of two parts:

  • The final presentation counts for 30% of the total score
  • The final reporting counts for 70% of the total score

Information about retaking exams

Given the specific evaluation form, there is no alternative exam over the entire examination contents  organized during the Sept. examination period for those students who were not active in the course of the academic year or who had a  limited participation. For students who have a sufficient contribution during the year, it will be checked how a replacement for the examination can be organized.

ECTS Advanced Subtractive Manufacturing (B-KUL-H0E62A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract

Aims

This course aims at providing an in-depth scientific understanding of modern material removal processes by building up on the knowledge acquired at Bachelor’s level.

At the end of this course, you will be able to:

  • Understand the fundamental working principles of different conventional and non-conventional material removal processes.
  • Explain the influence of the process conditions on the material removal mechanisms and properties of the final product.
  • Estimate the outcome of the process in terms of efficiency and quality of the final product for the materials and process parameters selected.
  • Propose innovative strategies for efficient and sustainable machining of new materials, challenging features, novel functionalities, etc. by integrating your knowledge of the various process principles.

Previous knowledge

Basic knowledge of production processes

Pre-requisite:

Productietechnieken en –systemen (or equivalent)

Identical courses

H04Q2A: Geavanceerde materiaalafnameprocessen

Onderwijsleeractiviteiten

Advanced Subtractive Manufacturing: Lectures (B-KUL-H0E62a)

2.4 ECTS : Lecture 18 First termFirst term

Content

The following topics will be covered:

  • Dynamic aspects of machining (high speed machining, chatter)
  • 5-axis machining
  • Machining of hard and difficult-to-machine materials using conventional, non-conventional (e.g. EDM, ECM, LBM,…) and hybrid processes
  • Micro-machining and surface texturing
  • Advanced abrasive processes

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Lectures notes in the form of presentations (available on Toledo).

Open source textbooks and papers provided on Toledo.

Advanced Subtractive Manufacturing: Lab Sessions (B-KUL-H0E63a)

0.6 ECTS : Practical 10 First termFirst term

Content

4 practicals of 2h30:

- 1 pc session (work preparation for 5-axis machining)

- 2 lab sessions (5-axis maching, EDM)

- 1 workshop (process chain definition for complex product manufacturing)

Course material

Syllabus with descriptions of the practical exercises (via Toledo).

Evaluatieactiviteiten

Evaluation: Advanced Subtractive Manufacturing (B-KUL-H2E62a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Closed questions, Open questions
Learning material : Calculator

Explanation

The evaluation of the lab sessions will be processed into the grades of the entire course.

ECTS Additive Manufacturing Processes - 3D Printing (B-KUL-H0E64A)

3 ECTS English 25 Second termSecond term Cannot be taken as part of an examination contract

Aims

At the end of this course, the student will be able to:

  • Understand the basic working principles of the different 3D printing technologies for printing polymer, metal or ceramic components, and the hardware and software involved
  • Understand the physics behind the different 3D printing processes and the influence of different process parameters
  • Integrate their knowledge of the AM process principles/physics to explain:
    • Why certain materials can be successfully processed and others not with specific 3D printing techniques
    • The advantages and the limitations of current 3D printing processes compared to more traditional manufacturing processes in terms of productivity, accuracy, quality and mechanical performance.
    • The relation between the unique manufacturing conditions and the resulting mechanical properties of the printed materials
    • Why certain parts are suitable or not suitable to be produced by 3D printing
    • The future challenges in 3D printing research

Previous knowledge

Basic knowledge of physics, chemistry, materials science and manufacturing techniques is required.

Identical courses

H04P7A: 3D printen

Onderwijsleeractiviteiten

Additive Manufacturing Processes - 3D Printing: Lectures (B-KUL-H0E64a)

2.7 ECTS : Lecture 20 Second termSecond term

Content

The lectures will be organized in two parts.

  • In the first part, the general concept of 3D printing will be discussed after which students will learn the basic working principles of the most important 3D printing technologies for processing polymers, metals and ceramics. These lectures will be structured based on the form of raw material to be used, e.g. powder based (SLS, SLM, EBM, etc.), liquid based (SLA, DLP, Objet, etc.), solid based (FDM, LOM, etc.) and gas based (LCVD).
  • In the second part, the lectures will focus on state-of-the art developments in powder bed and laser based 3D printing processes, e.g. Selective Laser Sintering and Selective Laser Melting. In these lectures, some of results of recent research at KU Leuven will be included. Also quest speakers from both academia and industry will be involved in this part of the course

Course material

Scientific papers for part 2 of lectures (available on Toledo)

Additional open source handbooks available on Toledo.

Additive Manufacturing Processes - 3D Printing: Lab Sessions (B-KUL-H0E65a)

0.3 ECTS : Practical 5 Second termSecond term

Content

lab sessions in the KU Leuven - Additive Manufacturing lab, seminars, company visits

Evaluatieactiviteiten

Evaluation: Additive Manufacturing Processes - 3D printing (B-KUL-H2E64a)

Type : Exam during the examination period
Description of evaluation : Oral, Written
Type of questions : Multiple choice, Closed questions, Open questions
Learning material : Course material, Reference work

Explanation

Written exam with oral explanation.

ECTS Advanced Measurement Techniques in Fluid Mechanics (B-KUL-H0E66A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract

Aims

The student acquires skills concerning advanced measurement techniques such as Hot Wire Velocimetry, Particle Image Velocimetry, Laser Doppler Velocimetry, Imagery and Fluorescence techniques.
The student learns how to process data, how to critically analyse the data and extract relevant physical quantities. 
 

Identical courses

H05A6A: Geavanceerde meettechnieken in de stromingsmechanica

Is included in these courses of study

Onderwijsleeractiviteiten

Advanced Measurement Techniques in Fluid Mechanics: Lectures (B-KUL-H0E66a)

1.2 ECTS : Lecture 8 First termFirst term

Content

Contents of the Lectures:

  • Hot wire velocimetry: Principle of the technique, multi-wire configurations, calibration of the hot wire, data analysis and measurement uncertainty, examples of applications.
  • Laser Doppler Velocimetry (LDV): The Doppler effect and the fringe velocimetry theory, experimental configuration, 2D and 3 D velocimetry, data analysis and measurement accuracy, examples of application in low-speed and high-speed flows.
  • Particle Image Velocimetry (PIV): Introduction, two component PIV, three component PIV, measurement accuracy, PIV versus LDV.
  • PIV based techniques and applications: Microscopic PIV, Background Oriented Schlieren, Reference Image Topography, application to two phase flows, application to extreme conditions (flames and cryogens).
  • Laser Induced Fluorescence techniques: Fluorescence and phosphorescence principles, temperature measurements in a liquid, temperature and concentration measurement in a gas, line and planar configurations.
  • Optical Density measurements: High Speed Visualization, image analysis algorithms.

Course material

  • Reference books 
  • Slides on Toledo

Advanced Measurement Techniques in Fluid Mechanics: Lab Sessions (B-KUL-H0E67a)

1.8 ECTS : Practical 20 First termFirst term

Content

Lab sessions:

  • 4 Lab sessions.
  • Groups of 3 to 5 students assigned to one lab session.
  • 20 hours of lab presence to be distributed if possible in two weeks.

Course material

Experiment guidelines

Evaluatieactiviteiten

Evaluation: Advanced Measurement Techniques in Fluid Mechanics (B-KUL-H2E66a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Report, Presentation
Type of questions : Open questions
Learning material : Computer

Explanation

The grading  consists of two parts:

  • The final presentation counts for 30% of the total score
  • The final reporting counts for 70% of the total score

Information about retaking exams

Given the specific evaluation form, there is no alternative exam over the entire examination contents  organized during the Sept. examination period for those students who were not active in the course of the academic year or who had a  limited participation. For students who have a sufficient contribution during the year, it will be checked how a replacement for the examination can be organized.

ECTS Production and Quality Assurance Processes in the Aerospace Industry (B-KUL-H0E68B)

5 ECTS English 56 First termFirst term Cannot be taken as part of an examination contract
Castagne Sylvie (coordinator) |  Boeckx Jan |  Castagne Sylvie

Aims

The first part of this course aims at providing an in-depth scientific understanding of modern material removal processes by building up on the knowledge acquired at Bachelor’s level.

At the end of this course, you will be able to:

  • Understand the fundamental working principles of different conventional and non-conventional material removal processes.
  • Explain the influence of the process conditions on the material removal mechanisms and properties of the final product.
  • Estimate the outcome of the process in terms of efficiency and quality of the final product for the materials and process parameters selected.
  • Propose innovative strategies for efficient and sustainable machining of new materials, challenging features, novel functionalities, etc. by integrating your knowledge of the various process principles.

In the second part of the course, aspects related to quality control processes in the aviation industry are covered.

Previous knowledge

Basic knowledge of production processes

Pre-requisite:

Productietechnieken en –systemen (or equivalent)

Identical courses

H9X51A: Productie- en kwaliteitsborgingsprocessen in de luchtvaart
H0E68A: Production and Quality Assurance Processes in the Aerospace Industry

Onderwijsleeractiviteiten

Advanced Subtractive Manufacturing: Lectures (B-KUL-H0E62a)

2.4 ECTS : Lecture 18 First termFirst term

Content

The following topics will be covered:

  • Dynamic aspects of machining (high speed machining, chatter)
  • 5-axis machining
  • Machining of hard and difficult-to-machine materials using conventional, non-conventional (e.g. EDM, ECM, LBM,…) and hybrid processes
  • Micro-machining and surface texturing
  • Advanced abrasive processes

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Lectures notes in the form of presentations (available on Toledo).

Open source textbooks and papers provided on Toledo.

Is also included in other courses

H0E62A : Advanced Subtractive Manufacturing

Advanced Subtractive Manufacturing: Lab Sessions (B-KUL-H0E63a)

0.6 ECTS : Practical 10 First termFirst term

Content

4 practicals of 2h30:

- 1 pc session (work preparation for 5-axis machining)

- 2 lab sessions (5-axis maching, EDM)

- 1 workshop (process chain definition for complex product manufacturing)

Course material

Syllabus with descriptions of the practical exercises (via Toledo).

Is also included in other courses

H0E62A : Advanced Subtractive Manufacturing

Quality Assurance Processes in the Aerospace Industry: Lectures (B-KUL-H0E68a)

1.6 ECTS : Lecture 18 First termFirst term

Content

1. Economic and financial aspetcs
a. Recurring cost
b. Non-recurring cost

2. Quality control procedures
a. Civil aviation
b. Military aviation
c. ISO-norms
d. Customers certification
e. Quality handbook
f. Statistical process control

3. Production cell
a. Substitutability
b. Basic structure 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Course notes

Language of instruction: more information

Lectures

Quality Assurance Processes in the Aerospace Industry: Practice Sessions (B-KUL-H0E69a)

0.4 ECTS : Practical 10 First termFirst term

Content

Through an industrial visit and direct contacts with managers of an aeronautical company, students must deliver (in small groups) a professional presentation concerning typical aeronautical processes e.g. quality control, scheduling and planning of production, cost control, continuous improvement, ...

Evaluatieactiviteiten

Evaluation: Production and Quality Assurance Processes in the Aerospace Industry (B-KUL-H2E68b)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Closed questions, Open questions
Learning material : Calculator

Explanation

The evaluation of the lab sessions will be processed into the grades of the entire course.

ECTS Vehicle Propulsion (B-KUL-H0E70A)

3 ECTS English 25 Second termSecond term Cannot be taken as part of an examination contract
Naets Frank (coordinator) |  Desmet Wim |  Naets Frank

Aims

  • The student has to be able to name and explain (reproduce) the concepts and thinking patterns around the different aspects of vehicle propulsion.
  • The student should be able to integrate knowledge of combustion enginers, transmission lines and vehicles.
  • The student shoul be able to independently make a study of an integral vehicle propulsion system on a modern, academic level.
  • The student should be able to apply the theory of vehicle propulsion on a number of test conditions.

Previous knowledge

The student knows how to work with concepts of combustion engine theory, electricity, machine construction, control theory, system theory and mathematical analysis and is able to independently solve exercises in these disciplines.
Preliminary conditions:
The student should have successfully completed the following courses of the Bachelor of Applied Sciences and Engineering: Materials Engineering: H01N8A (machine elements), H01L8A (electricity), H01N0A (movement and vibrations), as well as the following courses of the Master of Applied Sciences and Engineering: Mechanical Drives and Control Theory.

Order of Enrolment



SIMULTANEOUS(H04S6A ) OR SIMULTANEOUS(H00R7A )


H04S6AH04S6A : Mechanical Drive Systems
H00R7AH00R7A : Mechanische aandrijvingen

Identical courses

H05A3A: Voertuigpropulsie

Onderwijsleeractiviteiten

Vehicle Propulsion: Lectures (B-KUL-H0E70a)

2.7 ECTS : Lecture 20 Second termSecond term

Content

The lectures in vehicle propulsion cover 3 key aspect in modern automotive (and off-highway) powertrain design and development:

  • Transmission and power split operation and design
    This section discusses a range of common transmission configurations in modern automotive systems and present basic design rules. Power split transmission, which form the basis for hybrid powertrains, as treated in detail as well.
  • ICE-electric hybrid powertrains
    This section discusses the different types or ICE-electric hybrid powertrains and provides engineering insight in the trade-offs encountered in selecting the appropriate layout for different applications.
  • System level simulation methods for powertrain design
    This section provides an introduction into the use of bond-graph based computer simulation tools which enable engineers to rapidly perform a assessment of the powertrain performance in a vehicle.

Course material

Course notes and reference material available on the website.

Vehicle Propulsion: Lab Sessions (B-KUL-H0E71a)

0.3 ECTS : Practical 5 Second termSecond term

Content

Practical 1: Measuring the index lines of a diesel motor
Practical 2: Tuning a transmission characteristic on a combustion motor with the dynamic test bank, with calculations.
Practical 3: Study of transmission-components, measuring octane number.

Course material

Workbook practical vehicle propulsion.

Evaluatieactiviteiten

Evaluation: Vehicle Propulsion (B-KUL-H2E70a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions

Explanation

The exam is fully written
Cooperation during the lab sessions is evaluated and accounted in the end score
The exam covers both the lectures and the lab sessions

ECTS Stage studiebegeleiding: Werktuigkunde (B-KUL-H0E73A)

3 studiepunten Nederlands 90 Beide semestersBeide semesters Uitgesloten voor examencontract

Doelstellingen

De algemene doelstelling van het opleidingsonderdeel is het ontwikkelen en/of verder uitbouwen van de didactische vaardigheden van de student. Hij/zij zal dit kunnen doen door het didactisch team van één van de OPO's : H01B0A, toegepaste mechanica 1 -  H01C8A, toegepaste mechanica 2 - H01B4A, thermodynamica te assisteren.

In wat volgt worden de specifieke leerdoelstellingen voor de student-begeleiders opgelijst. Het gaat hierbij om didactische vaardigheden en houdingen die ze dienen te verwerven. 
 
- De student-begeleider kan de leerinhouden kort en bondig uitleggen, toelichten en verdedigen
- De student-begeleider kan de leerinhoud verduidelijken door concrete voorbeelden, illustraties of verbanden met andere elementen aan te halen
- De student-begeleider faciliteert het leerproces van de studenten door (i) gerichte vragen te stellen en/of (ii) door vragen van de studenten te beantwoorden met als doel de studenten zelf de oplossing te laten vinden zonder die oplossing letterlijk te geven
- De student-begeleider kan inschatten of bepaalde vragen het best classicaal of  individueel kunnen behandeld worden
- De student-begeleider maakt optimaal gebruik van audiovisuele of andere didactische hulpmiddelen. Hij/zij kan effectief communiceren en presenteren
- De student-begeleider heeft een open en empathische houding naar de studenten toe
- De student-begeleider kan de studenten aanmoedigen en motiveren om oefeningen (binnen de voorziene tijd) op te lossen
- De student-begeleider beheert de groep op een effectieve manier
- De student-begeleider communiceert vlot met de betrokken docenten en komt gemaakte afspraken stipt en correct na
- De student-begeleider kan reflecteren op het eigen functioneren als student-begeleider

Begintermen

De student bezit goede communicatievaardigheden die het mogelijk maken didactische taken uit te voeren. Geïnteresseerde studenten melden zich bij één van de vaktitularissen die na een evaluatiegesprek in onderling overleg beslissen of de student al dan niet in aanmerking komt. Het aantal studenten dat in aanmerking komt voor deze OPO is beperkt en is afhankelijk van de noden die de opleiding heeft.

De student moet in het bezit zijn van het bachelordiploma en moet credits  hebben behaald voor het opleidingsonderdeel waarvoor hij/zij als student-begeleider zal optreden.

Onderwijsleeractiviteiten

Stage studiebegeleiding: Werktuigkunde (B-KUL-H0E73a)

3 studiepunten : Stage 90 Beide semestersBeide semesters

Inhoud

De student die het OPO 'stage studiebegeleiding: Werktuigkunde' volgt, zal ingezet worden als student-begeleider bij oefenzittingen of practica of begeleidingssessies van de opleidingsonderdelen Toegepaste mechanica 1, Toegepaste mechanica 2 en Thermodynamca. Het inzetten van student-begeleiders is een vorm van peer tutoring wat in de literatuur omschreven wordt als een verzamelterm voor actieve en interactieve strategieën die aangewend worden door individuen met een gelijke status, die geen professionele leerkracht zijn, om de ontwikkeling van kennis en vaardigheden van anderen en van zichzelf actief te ondersteunen.  De rol van de student-begeleider draait met andere woorden om het faciliteren van het leerproces op een interactieve, systematisch en doelgerichte manier. 

*

De student-begeleider staat het didactisch team van het geselecteerde bachelor opleidingsonderdeel bij.  De hieronder vermelde leeractiviteiten expliciteren wat daaronder concreet verstaan wordt.

In het academiejaar 2018-2019 is begeleiding door studenten enkel mogelijk in Toegepaste mechanica 1. Afhankelijk van de interesse zal het later ook mogelijk worden om begeleiding te verzorgen bij Toegepaste mechanica 2 en Thermodynamica.

Studiemateriaal

Voor de inhoudelijke aspecten is het studiemateriaal dat hoort bij het opleidingsonderdeel uit de bacheloropleiding ter beschikking. Voor de didactische aspecten wordt bij het begin van het opleidingsonderdeel een praktijkgerichte trainingssessie georganiseerd. 

Toelichting werkvorm

Elke oefenzitting die de student-begeleider zal verzorgen, zal bestaan uit 3 fases:
- een voorbereidingsfase tijdens dewelke (i) de student-begeleider zijn kennis opfrist van de te behandelen inhoud en (ii) er duidelijke afspraken gemaakt worden tussen de student-begeleider en het didactisch team over wat er verwacht wordt en wat de link met de lopende theorielessen is
- de uitvoeringsfase tijdens dewelke effectief assistentie verleend wordt tijdens de oefenzitting (zie ook hieronder)
- de evaluatiefase tijdens dewelke de student-begeleider reflecteert over de voorbije oefenzitting (zie ook verder bij evaluatie)
 
De rol van de student-begeleider tijdens de oefenzittingen zal bestaan uit:
 
- het uitleggen, toelichten en verdedigen van leerinhouden
- concrete voorbeelden, illustraties, ervaringen en verbanden geven
- de studenten aan de hand van tips op goede weg helpen
- vragen stellen om studenten aan het denken te zetten
- onderlinge discussie en interactie stimuleren en ondersteunen
- studietips en adviezen geven
- feedback geven
- studenten aanmoedigen en ondersteunen
 
In een latere fase (e.g., wanneer dezelfde oefenzitting reeds (meerdere keren) gegeven is) kunnen bijkomende taken ingevuld worden:
- het opstarten van de sessie (verwelkomen van de studenten, situeren van de oefenzitting, nagaan van  vragen/moeilijkheden bij de studenten, …)
- het afronden van de sessie (kernaspecten samenvatten/herhalen, polsen naar onduidelijkheden die kunnen meegenomen worden naar de volgende oefensessie, feedback vragen van de studenten, studenten bedanken, …)

Evaluatieactiviteiten

Evaluatie: Stage studiebegeleiding: Werktuigkunde (B-KUL-H2E73a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Verslag, Medewerking tijdens contactmomenten, Procesevaluatie

Toelichting

Volgende permanente evaluatievormen zullen aangewend worden om na te gaan of de student-begeleider de vooropgestelde leerdoelstellingen al dan niet heeft bereikt.  
 
•  Observatie
Tijdens minimum 2 oefenzittingen wordt de student-begeleider geobserveerd door het didactisch team. Hierbij wordt een (vooraf beschikbare) observatieleidraad gevolgd die gebaseerd is op de vooropgestelde doelstellingen (e.g., stimuleert de student-begeleider het zelf zoeken van antwoorden; moedigt hij/zij participatie aan)

•  Zelfevaluatie
Aan de hand van een ter beschikking gesteld reflectieformulier kan de student-begeleider de voorbije sessie naar inhoud en uitwerking voor zichzelf evalueren (e.g., Wat ging goed? Wat ging minder goed? Waarom? Zijn de vooropgestelde doelstellingen bereikt? Aan wat kan dit worden toegeschreven?)
 
•  Intervisie
Op basis van de informatie verzameld tijdens de observatiesessies, aangevuld met de reflectieformulieren zal tussentijds en/of op het einde van het semester een intervisie plaatsvinden tijdens dewelke de student-begeleider, samen met de docent, (terug)kijkt naar de manier waarop hij zijn begeleidingsactiviteiten uitgeoefend heeft. Het gaat met andere woorden om het kritisch herbekijken van het eigen functioneren als student-begeleider. Op die manier wordt de student-begeleider zich bewust van zijn eigen aanpak en kan hij/zij die, indien nodig, bijsturen. 

De score op de evaluatie is geslaagd of niet-geslaagd.  Er is geen numerieke quotering, wat ook impliceert dat dit opleidingsonderdeel niet wordt meegerekend bij de bepaling van de graad van verdienste over de masteropleiding.

 

Toelichting bij herkansen

 

ECTS Thermal Systems (B-KUL-H0H00A)

5 ECTS English 52 Second termSecond term Cannot be taken as part of an examination contract
Helsen Lieve (coordinator) |  Boesmans Bart |  Helsen Lieve

Aims

The student is able:

  • to analyse thermal systems statically and dynamically through modelling and/or experiments;
  • to investigate the dynamic behaviour of thermal systems using the important time scales of the system, and evaluate the system controllability;
  • to improve (hybrid) system performance by incorporating the interaction between system components and apply system integration;
  • to choose the right thermal system to realise a specific energy conversion in a sustainable way;
  • to understand the impact of design on control and vice versa and to incorporate these insights in new designs and improvement of existing designs, accounting for technical constraints;

to quantitatively calculate the performance of thermal systems, with different complexity and on different scales.

 

Previous knowledge

The course is open to students with a thorough knowledge of thermal engineering, such as Technical Thermodynamics, Heat Transfer, Fluid Mechanics and Turbomachines.
Preliminary conditions:
None for Bachelors of Applied Sciences and Engineering: Mechanical engineering and students of the Master Energy.

Identical courses

H0S07A: Thermische systemen

Is included in these courses of study

Onderwijsleeractiviteiten

Thermal Systems: Lectures (B-KUL-H0H00a)

3.8 ECTS : Lecture 32 Second termSecond term

Content

Thermal systems are treated from demand side to supply side in the global energy picture. Focus is on following topics:
1. Thermal systems – demand side
Focus is on the interaction between components within a system, static and dynamic analysis, control, impact of design, technical constraints
a. Component and system analysis (static) applied to refrigerators: thermodynamic principles, single stage compression refrigerator, components, refrigerants, multi stage compression refrigerator, absorption refrigerator, dry-air refrigerator, liquefaction
b. Dynamic analysis of heat pumps integrated in buildings: production feeds emission, hybrid systems, role of thermal energy storage, hybrid GEOTABS concept as a case
c. Extension to clusters of buildings: aggregation, interaction with energy networks, demand response of thermostatically controlled loads
d. Pinch analysis: heat recovery systems
e. Exergy analysis and exergo-economics

Thermal systems – supply side
Focus on thermal power plants (Rankine cycles), with links to other cycles (ORC, CSP …)
a. Combined Heat and Power (CHP) and system integration
b. Thermal power plants: conventional thermal power plants, dynamic aspects, link with other cycles, carbon capture and storage (CCS)

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Explanation on the blackboard

Additional material on Toledo (slides, papers, chapter book …)

Format: more information

Lectures

Thermal Systems: Exercise and Lab Sessions (B-KUL-H0H01a)

1.2 ECTS : Practical 20 Second termSecond term

Content

These sessions aim for a step-wise approach for (dynamic) system analysis starting at one scale and moving towards the interaction at different scales (demand-supply), using model simulations and/or measurements.

Focus is on:

  • Dynamic behaviour and control of thermal systems
  • GEOTABS
  • Thermal networks
  • Demand response

Course material

Material for lexercise sessions is available through Toledo.

Format: more information

Practical sessions that apply the lectures material to obtain deeper insights, among them exercise sessions and take-home exercises.  

Evaluatieactiviteiten

Evaluation: Thermal Systems (B-KUL-H2H00a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions, Closed questions
Learning material : Calculator

Explanation

Examining insights obtained during lab or exercise sessions can be part of the evaluation.

The questions can be open, closed or multiple-choice (with correction for guessing)

Information about retaking exams

Second exam chance will be in the same way.

ECTS Toegepaste algebra en differentiaalvergelijkingen (B-KUL-H0M69B)

7 studiepunten Nederlands 67 Eerste semesterEerste semester
Cools Ronald (coördinator) |  Cools Ronald |  Huybrechs Daan

Doelstellingen

Het doel van deze cursus is om toepasbare begrippen en technieken aan
te leren uit  matrixrekenen, lineaire algebra,
differentiaalvegelijkingen... op een rigoureuze manier, doch gesteund
op geometrische inzichten en gemotiveerd door concrete
ingenieurstoepassingen uit d  verschillende specialiteiten
(bouwkunde, mechanica, elektrotechniek, computerwetenschappen, ...).
Immers het toenemende gebruik van computers, automatisering, ...
vereist een zeer degelijke fundering van algebraïsche methoden. Tevens
vormt deze cursus een basis voor heel wat andere cursussen en de
ingenieursopleiding zoals de studie van algoritmen, systeemtheorie,
signaalverwerking, CAD en ontwerpmethodologiën, regeltechniek,
communicatietheorie, netwerktheorie, statistiek, stochastische
processen.
Het belang van oefeningen in dit vak kan niet genoeg worden onderstreept.

Begintermen

Analyse en Algebra zoals ze in het middelbaar en de industriele hogeschool gezien werden.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Aanvullingen differentiaalvergelijkingen: hoorcollege (B-KUL-H05U1a)

1 studiepunten : College 11 Eerste semesterEerste semester

Inhoud

Aanvullingen differentiaalvergelijkingen en toepassingen

7. Randwaardeproblemen en Sturm-Liouville theorie
   Tweede orde randwaardeproblemen
   Homogene randwaardeproblemen: eigenwaarden en eigenfuncties
   Sturm-Liouvilleproblemen: orthogonaliteit van eigenfuncties, zelftoegevoegde differentiaaloperator, identiteit van Lagrange
   Toepassingen: benaderen van functies, Fourier-reeksen

8. Partiële differentiaalvergelijkingen
   Lineaire partiële differentiaalvergelijkingen van tweede orde: classificatie en types, homogene en niet-homogene randvoorwaarden
   Methode van de scheiding van veranderlijken
   Toepassingen: de ééndimensionale warmte(diffusie)vergelijking, de ééndimensionale golfvergelijking, de tweedimensionale Laplacevergelijking, problemen met cirkel- en/of cylindersymmetrie. 
 

Studiemateriaal

Handboek: 
Elementary differential equations and boundary value problems – International student version with ODE Architect – 9th edition, 
William E. Boyce and Richard C. DiPrima, John Wiley & Sons, Inc.
ISBN: 978-0-470-39873-9

Handboek wordt verdeeld via Acco i.s.m. VTK.

Toledo: 
Slides, extra voorbeelden en oefeningen , studieprojecten, modeloplossingen
 

Lineaire algebra: hoorcollege (B-KUL-H08M5a)

2 studiepunten : College 15 Eerste semesterEerste semester

Inhoud

Lineaire algebra en matrixrekenen:

  • Vectorruimten en lineaire afbeeldingen
  • Matrixrekenen
  • Stelsels van lineaire vergelijkingen, rijechelonvorm, rang van een matrix
  • Determinanten
  • Eigenwaarden en eigenvectoren, diagonalisatie van symmetrische matrix
  • Kwadratische vormen, normaalvorm, positief, negatief definiet
  • Normen, afstand, scalair product, orthogonale projectie, kleinstekwadratenoplossing, Gram-Schmidt, QR ontbinding
  • orthogonalisatie, volume van een parallellepipedum, singuliere waarden ontbinding, veralg. inverse, beste rang k benadering.
     

Studiemateriaal

Handboek: Linear Algebra and its Applications, David C. Lay, Pearson Education.

Handboek wordt verdeeld via Acco i.s.m. VTK.

Komt ook voor in andere opleidingsonderdelen

H0M69A : Toegepaste algebra en differentiaalvergelijkingen

Differentiaalvergelijkingen: hoorcollege (B-KUL-H08M6a)

2.8 studiepunten : College 21 Eerste semesterEerste semester

Inhoud

Differentiaalvergelijkingen en toepassingen

1. Inleiding
   Continue veranderingsprocessen: wiskundige beschrijving
   Enkele basismodellen: fysische en biologische systemen
   Richtingsvelden en integraalcurves
   Classificatie van differentiaalvergelijkingen
   Korte historiek

2. Eerste orde differentiaalvergelijkingen
    Lineaire vergelijkingen: integrerende factoren
    Niet-lineaire vergelijkingen: scheiding van veranderlijken, exacte differentiaalvergelijkingen
    Existentie- en eenduidigheidsstellingen
    Toepassingen: autonome vergelijkingen en populatiemodellen

3. Lineaire differentiaalvergelijkingen van hogere orde
    Algemene theorie: lineaire onafhankelijkheid van basisoplossingen en de Wronskiaan
    Homogene vergelijkingen met constante coëfficiënten: de karakteristieke vergelijking, reductie van de orde
    Homogene vergelijkingen met niet-constante coëfficiënten: bijzondere types, reductie van de orde
    Niet-homogene vergelijkingen: methode van de onbepaalde coëfficiënten, methode van de variatie van parameters. 
    Toepassingen: harmonische trilling (met of zonder demping), gedwongen trillingen. 

4. Stelsels lineaire differentiaalvergelijkingen van eerste orde
    Algemene theorie: vector functies, lineaire onafhankelijkheid, Wronskiaan, algemene oplossing
    Homogene systemen met constante coëfficiënten: eigenstructuur, fundamentele matrices
    Niet-homogene systemen: methode van de onbepaalde coëfficiënten, methode van de variatie van parameters. 
    Analyse van lineaire systemen: het fasevlak, het faseportret, stabiliteit
    Toepassingen: stabiliteitsdiagramma en bifurcaties

5. Stelsels niet-lineaire differentiaalvergelijkingen en stabiliteit
    Autonome systemen: kritische punten en stabiliteit
    Lokaal lineaire systemen: linearisatie van niet-lineaire systemen
    Periodieke oplossingen en limietcycli
    Chaos en vreemde aantrekkers
    Toepassingen: de gedempte slinger, competitiemodellen, roof-prooidiermodellen, de Lorenz vergelijkingen

Studiemateriaal

Handboek: 
Elementary differential equations and boundary value problems – International student version with ODE Architect – 9th edition, 
William E. Boyce and Richard C. DiPrima, John Wiley & Sons, Inc.
ISBN: 978-0-470-39873-9

Handboek wordt verdeeld via Acco i.s.m. VTK.

Toledo: 
Slides, extra voorbeelden en oefeningen, studieprojecten, modeloplossingen. 

Webtools: 
Electronische zelf-testen, Zoek- en antwoordmachines op het web. 

Didactische software:
ODE-Architect (CD-rom of webregistratiecode, zie handboek)

Komt ook voor in andere opleidingsonderdelen

H0M69A : Toegepaste algebra en differentiaalvergelijkingen

Toegepaste algebra en differentiaalvergelijkingen: oefeningen (B-KUL-H0M73a)

1.2 studiepunten : Practicum 20 Eerste semesterEerste semester

Inhoud

zie H0M69a

Komt ook voor in andere opleidingsonderdelen

H0M69A : Toegepaste algebra en differentiaalvergelijkingen

Evaluatieactiviteiten

Evaluatie: Toegepaste algebra en differentiaalvergelijkingen (B-KUL-H2M69b)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Cursusmateriaal

Toelichting

Tijdens het examen mag men gebruik maken van de handboeken die in de lessen werd gebruikt, de bijhorende slides met daarop eigenhandig geschreven notities en de eigenhandig geschreven notities uit de oefenzittingen.

ECTS Mechanica (B-KUL-H0M70A)

5 studiepunten Nederlands 50 Eerste semesterEerste semester

Doelstellingen

De student leert om de basiswetten van de mechanica correct toe te passen in concrete mechanische systemen en bewegingen. Correct toepassen betekent hierbij dat de student weet onder welke voorwaarden hij welke wetten kan en mag toepassen, hij deze wetten correct kan formuleren en uitwerken voor een concrete situatie.

Via de hoorcolleges wordt de theorie van de dynamica aangebracht, die de studenten zich moeten eigen maken vooraleer ze die kunnen toepassen.

De student leert de basiswetten van de mechanica toe te passen aan de hand van eenvoudige opgaven. Met 'eenvoudig' wordt bedoeld dat het telkens toepassingen zijn op welbepaalde aspecten van de theorie (in tegenstelling tot complexe, 'geïntegreerde' opgaven). De oefeningen bereiden de student rechtstreeks voor op de evaluatie, die eveneens bestaat uit oefeningen.

Begintermen

basiskennis i.v.m. vectorrekenen, statica, kinematische grootheden (positie, snelheid en versnelling) en Newtonpostulaten, toegepast op een puntmassa

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Mechanica: hoorcollege (B-KUL-H0M70a)

3.9 studiepunten : College 30 Eerste semesterEerste semester

Inhoud

De basiswetten van de dynamica worden aangeleerd en toegepast. Hieronder wordt verstaan:

  • driedimensionele kinematica en dynamica (impuls, impulsmoment) van materiële systemen (inclusief onvervormbare voorwerpen)
  • niet-inertiële dynamica en relatieve beweging
  • energiemethoden (virtuele arbeid, methode van Lagrange)

De kinematica en dynamica van de vlakke beweging wordt behandeld als bijzonder geval van de algemene theorie.

De basiswetten van de mechanica worden opgebouwd en afgeleid. Daarnaast wordt er voldoende aandacht besteed aan het toepassen van deze wetten aan de hand van voorbeeld oefeningen.
 

Studiemateriaal

cursustekst

Komt ook voor in andere opleidingsonderdelen

H0N27A : Toegepaste mechanica met inbegrip van sterkteleer

Mechanica: oefeningen (B-KUL-H0M74a)

1.1 studiepunten : Practicum 20 Eerste semesterEerste semester

Inhoud

De basiswetten van de dynamica worden aangeleerd en toegepast. Hieronder wordt verstaan:

  • driedimensionele kinematica en dynamica (impuls, impulsmoment) van materiële systemen (inclusief onvervormbare voorwerpen)
  • niet-inertiële dynamica en relatieve beweging
  • energiemethoden (virtuele arbeid, methode van Lagrange)

De kinematica en dynamica van de vlakke beweging wordt behandeld als bijzonder geval van de algemene theorie.

Elke oefenzitting komt overeen met en biedt oefeningen aan die een toepassing zijn op een welbepaald hoofdstuk (of deel van een hoofdstuk) van de cursus.

Studiemateriaal

oefeningenbundel

Toelichting werkvorm

De student maakt zelf oefeningen (onder begeleiding). Studenten mogen hierbij samenwerken met hun medestudenten.

Komt ook voor in andere opleidingsonderdelen

H0N27A : Toegepaste mechanica met inbegrip van sterkteleer

Evaluatieactiviteiten

Evaluatie: Mechanica (B-KUL-H2M70a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Cursusmateriaal, Rekenmachine

Toelichting

De evaluatie bestaat uit een oefeningenexamen dat toetst of de student de basiswetten van de mechanica correct kan toepassen. Het examen is open boek (voor wat betreft de cursustekst; opgeloste oefeningen zijn niet toegelaten).

ECTS Numerieke wiskunde (B-KUL-H0M71A)

5 studiepunten Nederlands 51 Tweede semesterTweede semester Uitgesloten voor examencontract
Vandewalle Stefan |  Scheerlinck Nico (plaatsvervanger)

Doelstellingen

Dit is een eerste kennismaking met de numerieke wiskunde. Na het volgen van dit opleidingsonderdeel heeft de student inzicht in een aantal basisbegrippen van de numerieke wiskunde zoals numerieke conditie van een probleem en numerieke stabiliteit van een algoritme. Hij kent enkele praktische basisrekenmethoden voor:
- het oplossen van lineaire stelsels zowel met directe als met iteratieve methodes,
- het numeriek berekenen van afgeleiden en integralen,
- het benaderen van functies met behulp van veeltermen en splines,
- het oplossen van (stelsels) niet-lineaire vergelijkingen,
- het berekenen van eigenvectoren en eigenwaarden van matrices.
De oefenzittingen hebben tot doel om de studenten de gelegenheid te geven zich te bekwamen in de technieken en inzichten te verwerven in de begrippen en methoden van de numerieke wiskunde.

Begintermen

Om dit OPO te beginnen, is het nodig dat de student inzicht heeft in de basisbegrippen van lineaire algebra (vectorruimte, rekenen met matrices en vectoren, ...), analyse (functies, verloop van functies, afgeleide, integraal, ...) en algoritmen (for-loop, if-then-else, variabelen, ...), zoals aangebracht in klassieke inleidende academische cursussen.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Numerieke wiskunde: hoorcollege (B-KUL-H0M71a)

3.9 studiepunten : College 30 Tweede semesterTweede semester
Vandewalle Stefan |  Scheerlinck Nico (plaatsvervanger)

Inhoud

1. Conditie van een probleem.
2. Algoritmen: stabiliteit van een algoritme.
3. Floating point rekenkunde, foutenvoortzetting.
4. Vector- en matrixnormen, conditiegetal van een matrix.
5. Oplossen van lineaire stelsels: Gauss eliminatie.
6. Nuttige matrixontbindingen: LU-ontbinding, Cholesky ontbinding (voor positief definiete matrices), QR-ontbinding, singulierewaardenontbinding.
7. Oplossen van niet-lineaire vergelijkingen: iteratieve methoden (regula falsi, secant methode, methode van Newton-Raphson).
8. Oplossen van veeltermvergelijkingen (methode van Bairstow).
9. Iteratieve methoden voor het oplossen van (spaarse) stelsels (Jacobi, Gauss-Seidel) en versnelling van deze methoden (SOR).
10. Berekenen van eigenwaarden en eigenvectoren: methode van de machten, inverse iteratie.
11. Basisprincipes van interpolatie met nadruk op veelterminterpolatie en interpolatie met splines.
12. Numerieke differentiatie en integratie: basisformules, gebruik voor discretisatie van differentiaalvergelijkingen.

Studiemateriaal

Handboek:

A. Bultheel, K. Meerbergen, D. Nuyens, D. Roose. Numerieke wiskunde, Acco, Leuven, 2022.
ISBN: 9789464670769.
Handboek verkrijgbaar bij Acco De Moete, Campus Arenberg, Heverlee.

Weblink: https://kuleuven.acco.be/nl-be/items/9789464670769/Numerieke-wiskunde

 

Numerieke wiskunde: oefeningen (B-KUL-H0M75a)

1.1 studiepunten : Practicum 21 Tweede semesterTweede semester
Vandewalle Stefan |  Scheerlinck Nico (plaatsvervanger)

Inhoud

1. Bewegende kommavoorstelling en foutenanalyse
2. Conditie en stabiliteit
3. Veelterminterpolatie
4. Bewegende kommavoorstelling en foutenanalyse (PC-zitting)
5. Numerieke integratie
6. Oplossen stelsels lineaire vergelijkingen (PC-zitting)
7. Oplossen niet-lineaire vergelijkingen
8. Stelsels niet-lineaire vergelijkingen
9. Iteratieve methoden voor stelsels lineaire vergelijkingen
10. Eigenwaarden berekenen (PC-zitting)

Studiemateriaal

De opgaven worden ter beschikking gesteld via Toledo.

Toelichting werkvorm

Zowel in theoretische als praktische zittingen worden de concepten en numerieke methoden behandeld in de hoorcolleges verder ingeoefend.
Verschillende van de zittingen gaan door in een PC-labo en laten de studenten toe te experimenteren met een aantal van de numerieke methodes in de Matlab- rekenomgeving. Hierbij krijgen de studenten Matlab-programmaatjes die ze leren begrijpen en waarin ze eenvoudige aanpassingen aanbrengen.

Evaluatieactiviteiten

Evaluatie: Numerieke wiskunde (B-KUL-H2M71a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Cursusmateriaal, Rekenmachine

Toelichting

Het examen is een open-boek examen, schriftelijk met open vragen.

ECTS Elektriciteit, magnetisme en golven (B-KUL-H0M72A)

4 studiepunten Nederlands 30 Tweede semesterTweede semester

Doelstellingen

Na een herhaling van het formalisme voor het rekenen met scalaire- en vectorvelden wordt in deze cursus inzicht verworven in de basisfysica van elektrische, magnetische en elektromagnetische golffenomenen.  Op die manier krijgt de student de vaardigheid om elektromagnetische fenomenen en macroscopisch materiaalgedrag te kaderen vanuit de basiswetten van het elektromagnetisme, en vanuit microscopische elektrische en magnetische materiaaleigenschappen.  Ook worden de principes aangebracht van de interactie van elektromagnetische golven met materialen, die aan de basis liggen van verschillende fenomenen in optica, en van verschillende materiaalkarakterisatietechnieken in het elektromagnetische spectrum (van DC elektrische velden, over radiogolven en infraroodstraling, naar zichtbaar licht, UV en X-stralen).  De student verwerft de vaardigheid om op basis van eenvoudige elektromagnetische principes en verbanden afschattingen te maken van grootheden en materiaaleigenschappen die hun verklaring vinden in elektromagnetische fenomenen.  Daarnaast wordt er een inleiding gegeven over Fourieranalyse, met betrekking tot het beschrijven en analyseren van lineaire systemen.

Begintermen

Voor het beschrijven en begrijpen van elektromagnetisch materiaalgedrag worden een aantal basiswetten vertaald in een wiskundig formalisme.  Typische leidt de combinatie van een aantal wetten tot een nieuwe vergelijking die een bepaald fenomeen beschrijft.  Dit vereist een aantal wiskundige manipulaties, en het vlot kunnen rekenen met (partiële) afgeleiden, integralen, exponentiële en logaritmische funkties, complexe getallen, goniometrie, veeltermen en Taylorexpansies.
Met betrekking tot de beschrijving van een aantal elektromagnetische fenomenen wordt beperkte voorkennis verwacht op het vlak van mechanica, met name de wet van Newton, de mechanica van een massa-veersysteem, en de kinematica van rechtlijnige en cirkelvormige beweging. 

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Elektriciteit, magnetisme en golven (B-KUL-H0M72a)

4 studiepunten : College 30 Tweede semesterTweede semester

Inhoud

Scalaire velden en vectorvelden

  • Scalair en vectoreel product, gradiënt en divergentie, rotor
  • Divergentiestelling – stelling van Stokes
  • Conservatieve kracht en potentiaal

Elektrische veld en elektrische potentiaal

  • Wet van Coulomb, wet van Gauss
  • Polariseerbaarheid, polarisatie, elektrische susceptibiliteit, diëlektrische permittiviteit, diëlektrische verplaatsing
  • Toepassingen van elektrostatica: punteffect en van der Graaff generator
  • Boltzmannstatistiek
  • Temperatuursafhankelijkheid van de polarisatie van een verdund gas elektrische dipolen
  • Grootteorde van elektrisch dipoolmoment, elektromagnetische energie van geladen deeltjes
  • Condensator
  • Piëzo-, ferro-, pyro- elektrische materialen
  • Anisotroop en niet-lineair diëlektrisch gedrag

Elektrische stroom

  • Driftsnelheid, stroomdichtheid, stroom, wet van Ohm
  • Thermische energie en thermische snelheid
  • Golffunkties, toestandsdichtheid, energiebandstructuur, Brillouinzone
  • Pauliverbod, Fermi-energie en Fermi-statistiek
  • Temperatuursafhankelijkheid van de resistiviteit van halfgeleiders en metalen
  • Optisch gedrag van (gedopeerde) halfgeleiders en isolatoren

Magnetisme

  • Magnetische inductie, magnetisch veld, magnetisch moment, magnetisatie, magnetische susceptibiliteit, magnetische permeabiliteit
  • Toepassingen van magnetisme: solenoïde, inductantie, transformator, Hall effect, massaspectrometrie, magnetische fles, magnetisch veld en kracht tussen stroomgeleiders
  • Wet van Ampère, wet van Faraday-Lenz
  • Magnetisch veld en magnetisch moment van elektronische orbitaal en van elementen uit de tabel van Mendeljev 

Elektromagnetische golven en spectroscopische technieken

  • Wetten van Maxwell
  • Elektromagnetische golfvergelijking en (golf)oplossingen
  • Golfvector en polarisatie van een elektromagnetische golf
  • Dispersie van elektromagnetische golven in diëlektrica en geleiders en elektromagnetisch skin-effect
  • Interactie van elektromagnetische golven met elektrische dipolen verbonen met elektronen, atoomkernen en moleculen in een vloeistof en verband met optische, UV, IR en diëlektrische spectroscopie
  • Basiswerking van IR-spectroscopie, Raman- en Brillouinverstrooiing
  • Reflectie en transmissie van elektromagnetische golven aan grenslagen: wetten van Snell vanuit de wetten van Maxwell en de continuïteitswetten voor elektrische en magnetische velden aan materiaalovergangen
  • Toepassingen: werking van een prisma, polarisatie door reflectie, Brewsterhoek, totale interne reflectie

Fourieranalyse van signalen en systemen

  • Beschrijving van signalen en systemen met behulp van Fourieranalyse
  • Spectrum van periodische, niet-periodische en amplitudegemoduleerde signalen
  • Modulatie en convolutie

 

Studiemateriaal

Aangeboden via Toledo:

  • Cursustekst + slides hoorcollege’s 
  • Lijst met typische examenvragen
  • Voorbeelden van opgeloste vragen signaal- en systeemanalyse
  • Videolessen

Toelichting werkvorm

Tijdens het hoorcollege vertrekken we van een aantal fenomenologische wetten betreffende elektrische en magnetische velden, en betreffende de microscopische respons van materialen op elektrische en magnetische velden.  Via inzichtelijke logische redeneringen, gekaderd in wiskundige afleidingen, wordt daaruit de link gelegd met elektromagnetische fenomenen en met materiaalgedrag.  Nadruk wordt gelegd op het afschatten van grootteordes van fundamentele en observeerbare grootheden, en op het feit dat naast een groot aantal toepassingen een zeer grote fractie van het observeerbaar materiaalgedrag in verschillende disciplines van de wetenschap en technologie verklaard kan worden met behulp van eenvoudige elektromagnetische fenomenen op microscopisch niveau.  De uitleg in het hoorcollege wordt ondersteund door een compacte maar volledige cursustekst.  In het hoorcollege worden ook voorbeelden behandeld van verschillende types oefeningen en toepassingen.

De hoorcolleges zijn beschikbaar als videolessen.  Om de paar weken is er een interactiesessie waarbij de studenten antwoorden krijgen op vragen over de leerstof.

Evaluatieactiviteiten

Evaluatie: Elektriciteit, magnetisme en golven (B-KUL-H2M72a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Gesloten vragen
Leermateriaal : Formularium, Rekenmachine

Toelichting

Het examen is gesloten boek met beperkt formularium (cfr Toledo)

Onderdelen van het examen:

  • Denk-, inzichts- en afschattingsvragen (schriftelijk)
  • Bereken-  bespreek- en toepassingsvragen (schriftelijk)
  • Oefening Fourieranalyse van signalen en systemen (schriftelijk)

ECTS Religions (B-KUL-H0N82A)

3 ECTS English 20 Second termSecond term

Aims

Students aim at  

  • clarifying the functioning of religions and world views, especially the Christian religion, into culture and society;  
  • analyzing which anthropological stances and worldviews are present in society and culture (e.g. in media, health care, economy, technology, education) and critically reflecting on it;  
  • showing, explaining and illustrating the particularity of world views and religions, especially the Christian worldview;  
  • applying theoretical views from theology and religious sciences into actual societal debates;  
  • learning to know religious and ethical themes with regard to their own professional field and critically dealing with them;  
  • formulating a personal view about religions and world views in dialogue with the Christian faith in an argumentative manner:  
  • being capable to formulate the value of religion and world views for their own life;  
  • integrating religious and ethical dimensions in the development of their own professional identity

KU Leuven Vision on Education and Learning

Previous knowledge

This course does not require specific prior knowledge. General knowledge of the main lines of philosophy, ethics and western culture and history do belong to the presupposed background of the course. Concerning motivation, the students are not expected to be religious, but they are expected to be willing to reflect in an open and critical-scientific manner on fundamental ethical questions, and questions on the meaning of life, from different philosophical points of view, in particular, but not exclusively, the Jewish and Christian point of view.  

Identical courses

A08C4A: Religie, zingeving en levensbeschouwing
A04D5A: Religie, zingeving en levensbeschouwing

Is included in these courses of study

Onderwijsleeractiviteiten

Religions (B-KUL-H0N82a)

3 ECTS : Lecture 20 Second termSecond term

Content

Content Key themes in religion and theology are presented, based on insights of modern social sciences and contemporary philosophical thinking. The following questions are studied: what kind of purposes do religions serve, what is the core of the Christian faith and how can this be situated in the framework of other world religions? Both the relationship between Christianity and culture and Faith and Science is given much attention, as well as some classical themes which have always been the pivoting points of the Christian faith: the contribution of faith to personal happiness, the (Christian) expectations of a future life. Finally, the relevance of religious viewpoints on themes in engineering ethics will be presented.

Course material

Study cost: 11-25 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

The professor makes course notes available.

Format: more information

Interactive college. Apart from the lectures, a guest lecture could be organized.

Evaluatieactiviteiten

Evaluation: Religions (B-KUL-H2N82a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice
Learning material : None

Information about retaking exams

Contrary to the first examination (multiple choice), re-examination consists of 3 open questions. 

ECTS MOOC Mathematical Techniques for Problem Solving in Engineering and Science (B-KUL-H0O29A)

4 ECTS English 0 Both termsBoth terms
Huybrechs Daan (coordinator) |  Cools Ronald |  Poedts Stefaan |  Vandebril Raf |  N.

Aims

Module 1 Principles of Linear Algebra: Vector spaces

Learning goals - Students will be able to:

1. understand the concept of vector space
2. determine that a given transformation is a linear transformation or not
3. calculate all solutions of a system of linear equations and represent these in parametric form
4. determine the fundamental spaces of a matrix
5. verify linear (in)dependence, construct a basis for a given vector space
6. understand the concept of linear transformation, and be able to use the concepts of basis and coordinate system to represent a linear transformation as a matrix transformation
7. relate the fundamental spaces (incl properties such as dimension) of a matrix representing a transformation to the original (abstract) vector space

 

Module 2 Principles of Linear Algebra: Inner Product Spaces

Learning goals - The student will be able to:

1. compute the inner product and the norm and apply their properties
2. apply the Cauchy–Schwarz inequality, the triangular inequality and the Parallelogram Equality
3. use orthonormal bases and convert a vector from one base to another
4. apply the Gram-Schmidt procedure
5. define an Orthogonal Complement and an orthogonal projection
6. solve a minimization problem

 

Module 3 Linear Algebra: Eigenvalues

Learning goals - The student will be able to:

1. define and calculate eigenvectors, eigenvalues and their algebraic and geometric multiplicities
2. understand and exploit the connection between eigenvalues, the determinant and the matrix trace
3. calculate an eigenvalue decomposition
4. understand Hermitian matrices admit an orthogonal eigendecomposition
5. calculate the singular value decomposition and low rank approximations to linear transformations

 

Module 4 Integral Theorems

Learning goals - The student will be able to:

1. understand and use the concept of vector fields and conservative vector fields
2. calculate line integrals of vector fields (and to simplify such integrals by singling out the conservative parts, if any
3. calculate surface integrals and flux integrals
4. understand the physical meaning of gradient, divergence, curl operators
5. calculate the gradient of a scalar function and the divergence and curl operators applied to vector functions
6. understand and apply vector identities/calculus
7. understand and apply the theorem of Green

 

Module 5 Optimization in multiple variables

Learning goals - The student will be able to:

1. understanding of the concept of a real function of n real variables
2. understanding of the concept of partial derivatives and ability to compute them for a given function
3. understanding of the concept of gradient and its link to differentiability of a function of n real derivatives
4. understanding of the concepts of the chain rule and directional derivative
5. ability to apply the chain rule and compute the directional derivative of a given function of n real derivatives
6. understanding of the relation between critical points and extrema of a function of n real derivatives
7. determine the extrema of a function of n real derivatives
8. understanding of the concept of optimization with (a) side condition(s) and ability to solve such given problems
9. understanding of the concept of Lagrange multipliers and ability to exploit them to determine the solution of optimization problems with one or more side conditions

 

Module 6 Differential Equations

Learning goals - The student will be able to:

1. classify differential equations and systems of differential equations based on properties such as order, dimension, variable coefficients and linearity 3
2. solve first order linear differential equations
3. solve systems of linear differential equations with constant coefficients
4. understand and apply linear algebra techniques to linear systems of differential equations with constant coefficients
5. analyse the stability of linear systems and some non-linear systems

Onderwijsleeractiviteiten

Mathematical Techniques for Problem Solving in Engineering and Science (B-KUL-H0O29a)

4 ECTS : Lecture 0 Both termsBoth terms

Content

Module 1 Principles of Linear Algebra: Vector spaces

1. Vector spaces
2. Basis and coordinates
3. Fundamental spaces
4. Linear transformations
5. Systems

 

Module 2 Principles of Linear Algebra: Inner Product Spaces

1. Inner product & norm
2. Projections Orthogonal Bases
3. Least squares (LS) – problems

 

Module 3 Linear Algebra: Eigenvalues

1. Definition
2. Properties
3. Eigenvalue Decomposition
4. Orthgonal Eigenvalue Decomposition
5. SVD

 

Module 4 Integral Theorems

1. Vector and scalar fields
2. Conservative vector fields
3. Line integrals of vector fields
4. Surfaces and surface integrals
5. Gradient, divergence, curl operators and vector identities
6. Theorem of green

 

Module 5 Optimisation in multiple variables

1. Real functions of n real variables 
2. Curves in R^n
3. Partial derivatives and gradient
4. Chain rule and directional derivate
5. Extrema
6. Optimization with additional conditions
7. Lagrange multipliers

 

Module 6 Differential Equations

1. What are differential equations?
2. First order differential equations
3. sSystem of first order linear equations
4. Non-linear autonomous systems

Course material

All material is available on edX.

Format: more information

Asynchronous online learning - Blended learning - Didactic collection

Is also included in other courses

I0J92A : Linear Algebra: MOOC and Blended Course

Evaluatieactiviteiten

Evaluation: MOOC Mathematical Techniques for Problem Solving in Engineering and Science (B-KUL-H2O29a)

Type : Exam outside of the normal examination period
Description of evaluation : Written
Type of questions : Multiple choice
Learning material : None

Explanation

 

ECTS Vehicle Systems (B-KUL-H0O78A)

3 ECTS English 20 First termFirst term

Aims

Acquiring insight into and knowledge on the functional part of the different subsystems of a vehicle and their coherence, with attention for mechatronic aspects. Students should be able to critically analyze a vehicle system, show that they have insight into the functionality and underlying laws of the discussed system, and prove that they are familiar with the state of the art of the matter.
The course is limited to the vehicle - engine-technical and energy-related aspects are not dealt with. Only road and rail transport is discussed.

Previous knowledge

Knowledge of machine construction, control theory, drives, kinematics and dynamics.

Identical courses

H05A5A: Voertuigsystemen

Onderwijsleeractiviteiten

Vehicle Systems (B-KUL-H0O78a)

3 ECTS : Lecture 20 First termFirst term

Content

  • Overview of mechatronic systems in a vehicle
  • Drive line in road vehicles: manual/automatic transmission, 4WD, power management
  • Passive safety in road vehicles: crash-tests, regulations, airbag, crash warning
  • Active safety in road vehicles: ABS-EBM (Electronic Brake Management) - ASC (Automatic Stability Control, ESP)
  • Transport control in railroad vehicles (signalization, monitoring)
  • Homologation

Course material

Course text completed with articles and transparancies.

Evaluatieactiviteiten

Evaluation: Vehicle Systems (B-KUL-H2O78a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Paper/Project, Presentation
Type of questions : Open questions
Learning material : Course material

Explanation

Report and presentation on the mechatronic and technical aspects of a recent vehicle system.

ECTS Dimensional Metrology (B-KUL-H0O79A)

6 ECTS English 66 First termFirst term

Aims

To provide knowledge of the basic principles and techniques used for dimensional quality control in companies.

Insight into sources, causes, reproduction and calculation of measurement uncertainty. Insight in basic principles of dimensional measurements: SI system, traceability, Abbe principle, Taylor principle, relative versus absolute measurements, measurement standards, etc. Illustration of a number of measurement techniques: 1D, 2D, 3D measuring machines and measuring standards, surface roughness, interferometric measurements, X- ray CT measurements, the chi-square method..

Identical courses

H04P3C: Dimensionele meettechniek

Onderwijsleeractiviteiten

Dimensional Metrology: Lecture (B-KUL-H0O79a)

4.5 ECTS : Lecture 33 First termFirst term

Content

  • Fundamentals of dimensional metrology and quality control
  • 1D measurement
  • 2D measurement
  • 3D Digital coordinates measurement
  • Special techniques: optical measuring techniques (laser) interferometry, X-ray CT metrology.

Course material

Own course notes

Dimensional Metrology: Exercises and Laboratory Sessions (B-KUL-H0O80a)

1.5 ECTS : Practical 33 First termFirst term

Content

Labs and seminars with dimensional measuring machines: 1D Abbe Length Measure Banks, 2D universal measuring microscopes, 3D coordinate measuring machines, roughness meters, (laser) interferometers, etc.

Course material

Lab reports.

Evaluatieactiviteiten

Evaluation: Dimensional Metrology (B-KUL-H2O79a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, Calculator

ECTS New Energy Technologies: Seminars (B-KUL-H0O81A)

3 ECTS English 51 Second termSecond term Cannot be taken as part of an examination contract

Aims

The student must be able to recognize the application of thermo-technical sciences in the design of new thermoelectric systems and describe it academically.
The student must be able to apply the learning activity "lifelong learning" at the level of a civil engineer. This includes information on the internet, especially publications from popular science magazines and rather limited in academic science journals, and can bring together and integrate their own knowledge of the thermo technology.
The student is introduced to new technologies that offer in terms of thermo engineering and supply in the industry or will offer in the near future.

Previous knowledge

Knowledge of the following disciplines: thermal systems, thermodynamics, heat transfer, fluid mechanics, combustion, general mechanics, control engineering.
 
Preliminary conditions:
The 1st year of the Master of Engineering: Mechanical Engineering or Energy.

Identical courses

H04U2A: Nieuwe energietechnologieën: opdrachten

Onderwijsleeractiviteiten

New Energy Technologies: Seminars (B-KUL-H0O81a)

3 ECTS : Assignment 51 Second termSecond term

Content

The topics covered are new technologies that present themselves in the field of thermoelectric technology or energy.
For existing industrial specialized topics guest speakers from industry may be invited and/or the seminar presentation may be combined with a company visit.
For new topics, each student is asked to look for a subject themselves and, after approval, hold a seminar lecture about it of ½ hour, along with a summary text of 20 to 30 pages. This text contains a description of the technology, an academic approach (e.g. mathematical model), and a discussion.

Course material

Students should look for an interesting and topical issue in the field of thermoelectric technology. The student gathers their information from various sources and brings it together in a written report and a presentation on computer.
The student should pursue an appropriate balance between the soft, descriptive information from their sources and the hard science supporting information from their program.

Evaluatieactiviteiten

Evaluation: New Energy Technologies: Seminars (B-KUL-H2O81a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Report, Presentation, Self assessment/Peer assessment
Type of questions : Open questions

ECTS Precision Engineering (B-KUL-H0O82A)

3 ECTS English 25 Second termSecond term

Aims

This course aims to develop the following competence:
• Analyze and apply the basic principles of the design and manufacture of high-and ultra precision machines and instruments.
 

Previous knowledge

Knowledge (basic course followed) required on optical waves, mechanical engineering, production engineering.

Identical courses

H9X36A: Precisiemechanica

Onderwijsleeractiviteiten

Precision Engineering: Lectures (B-KUL-H0A17a)

2.7 ECTS : Lecture 20 Second termSecond term

Content

The following elements are covered:

1) Status of the technology: Technology trends, Moore's Law, Law of Taniguchi
2) Design principles: Axiom of minimum information, principle of functional independence, Total Design, Avoiding play, Principle of Abbe, design on stiffness, minimization of thermal deformation, Generation of precise movements, kinematic design, Error Correction, Filter principle, The reduction principle.
3) Processing Principles, Upper limit of the machining accuracy, Principle of element technology, the concept of "processing unit", the copy principle, the evolution principle, the principle of Abbe, workpiece material, Distorsion free chucking, machining in several steps, in-situ machining.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Handbook and lecture slides.

Format: more information

During the lectures the construction and operation principles will be illustrated. There are also visit to the lab of KULeuven to discuss some applications.

Precision Engineering: Exercises (B-KUL-H0A18a)

0.3 ECTS : Assignment 5 Second termSecond term

Content

This learning activity consists of visits to a research institution of a large company or a research laboratory of a university active in the field of precision engineering.

Attendance is mandatory.

Evaluatieactiviteiten

Evaluation: Precision engineering (B-KUL-H2O82a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Paper/Project
Type of questions : Open questions
Learning material : Computer

Explanation

For the examination on precision engineering you have to discuss a scientific paper.

Information about retaking exams

When you retake the exam you have to use new source material so you cannot reuse the papers presented during the 2nd examination period.

ECTS Design of Optics (B-KUL-H0O83A)

3 ECTS English 25 Second termSecond term
N. |  Boonen Rene (substitute)

Aims

Optics find its apllications in many domains of engineering, for example data storage and communications, precision measurements, camera’s, displays, production techniques etc…The electro-magnetic nature of optical waves is of prime importance to understand how an optical application functions.

The student must gather this knowledge and be able to apply it in optical designs.

Previous knowledge

Knowledge (basic course followed) required on optical waves, mechanical engineering, production engineering.

Physics course on optics.

Onderwijsleeractiviteiten

Design of Optics: Lectures (B-KUL-H0A19a)

2.7 ECTS : Lecture 20 Second termSecond term
N. |  Boonen Rene (substitute)

Content

The content of the course is:

Introduction

Geometrical optics; lenses, mirrors etc…, this part have to be aquired by self study due to it’s basic nature

Electro-magnetic waves, maxwell equations, wave equation.

Waves through media, dispersion effects

Reflection and refraction, Schnell’s law, Fresnel expressions of reflection and refraction on electrical isolators, effect on polarization of the light.

Interferance and bending on optical gratings, spectral resolution

Polarization, polarizing components such as polaroid films, nichol prisms etc..

Doppler effect

The human eye, color vision, displays

Interferometry, different types in interferometers, laser-doppler interferometry, their applications, analysis of optical components such as beam splitters, quarter and half lamda plates, etc…

electro-optic components such as Braggs cells, Pocket cells.

Course material

Schaum's Outline of Optics
  E. Hecht
  Mc Graw Hill, 1974

Fundamentals of optics

  F.A. Jenkins and H.E. White

  McGraw-Hill

Other material available on Toledo.

 

Format: more information

During the lectures the basic principles of optical design are illustrated.

Design of Optics: Exercises (B-KUL-H0A20a)

0.3 ECTS : Assignment 5 Second termSecond term
N. |  Boonen Rene (substitute)

Content

Homework with exerercises (also used for evaluation).

Course material

Same as for the lectures.

Evaluatieactiviteiten

Evaluation: Design of Optics (B-KUL-H2O83a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Take-Home
Type of questions : Open questions
Learning material : Course material, Computer

Explanation

The homework will be available in English and Dutch, the student can choose the language of preference.

Information about retaking exams

When the homework turns out to be unsatisfactory, the retake will be an written open book exam during the third exam period (August-September).

No electronic apparatus which can connect to another apparatus or internet is allowed, so all material used for the exam must be on paper.

Only a non-programmable calculator is allowed.

Further rules will be communicated on Toledo and/or the exam question form.

ECTS Design Methodologies (B-KUL-H0R71A)

6 ECTS English 63 Second termSecond term Cannot be taken as part of an examination contract

Aims

After completing this course the student possesses the analytic skills and has mastered the methods for a systematic design approach. Specifically, the student can describe the procedures and techniques available for the studied design methods, select the appropriate methods and apply the related techniques to concrete examples.

Situation with respect to related courses:
Whilst in the P&O courses designing is predominantly viewed as intuitively translating accumulated analytical capacities, with an emphasis on applying the knowledge acquired in theoretical engineering subjects, in this course the necessary theoretical knowledge and insights to a systematic design approach are provided, with special attention to product development. Here, the emphasis is on methods and techniques that contribute to increasing the synthesizing design abilities of the students and their use of these capabilities as part of the design process. This should result in a systematic approach to design projects, aiming for a conscious manner to generate well-optimized responses to the set requirements.
This course also aims to create some basic skills in line with the theoretical knowledge. Further exploration should be done in the context of integrated design exercises.

Previous knowledge

Participants preferentially have initial experience with design projects (P&Os).

Identical courses

H04V2A: Ontwerpmethodologieën

Onderwijsleeractiviteiten

Design Methodologies: Lecture (B-KUL-H0R71a)

4.07 ECTS : Lecture 30 Second termSecond term

Content

1. Introduction: survey design cycle, characteristics of design processes, course structure

2. Pre-trajectory:
   · Identification of needs
   · Creating a product portfolio
   · Problem definition

3. Marketing concepts and market analysis

4. The preparation of design specifications, including information sources:
   · Standards
   · IP preconditions and patent literature

5. Creativity Methods: i.a.
   · Lateral thinking
   · Brainstorming
   · Synectics
   · Biomimicry
   · Combinatorial concept generation
   · Morphological analysis
   · TRIZ

6. Decision making and design evaluation methods:
   · Design axioms
   · Decision tables
   · Decision theory
   · Multi-criteria analysis

7. Material selection and optimization

8. User Oriented Design
    · QFD
    · Value Analysis

9. Production Oriented Design: Design for manufacturing methods:
   i.a.
   · Design for Assembly
   · Taguchi method: robust design
   · Process-oriented design rules
   · Designer toolkits
   · Technology Group
   · Failure mode and effect analysis: FMEA

10. Ecodesign and Life Cycle Engineering

11. Life cycle costing and product service systems

12. Prototyping: methods and techniques

13. Case studies

Course material

  • Presentations / Handouts
    · References: books and recent journal articles

    · Recommended textbooks:
       - Gerhard Pahl, Wolfgang Beitz, Ken Wallace,
         Engineering Design: A Systematic Approach, Springer Berlin
       - Karl T. Ulrich, Steven D. Eppinger,
         Product Design and Development,
         McGraw-Hill International Editions
       - George E. Dieter,
         Engineering Design, A Materials and Processing Approach
         McGraw-Hill International Editions

Design Methodology and Methods : Exercises and Seminars (B-KUL-H0R72a)

1.93 ECTS : Practical 33 Second termSecond term

Content

1. Case studies
2. Exercise sessions and seminars:
i.a.
· Recognition of needs and problem definition
· Prepare functional specification
· Creativity exercises
· Design evaluation
· DFM analysis
· Multi-criteria analysis
· Material selection by means of CMS
· Principles of Concurrent Engineering and business game ...

Evaluatieactiviteiten

Evaluation: Design Methodologies (B-KUL-H2R71a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions, Closed questions
Learning material : None

Explanation

Closed book, oral exam with written preparation during the exam period.
Grading of group reports resulting from work sessions (group project)

 

Information about retaking exams

The group project cannot be reevaluated.  Re-examination consists of the written exam only.

Students who have not participated in the group project can in consequence not be reevaluated.

 

 

ECTS Forming Technology (B-KUL-H0R73A)

3 ECTS English 20 Second termSecond term

Aims

The purpose of this course is to provide a technical and scientific description of the main plastic forming techniques and of the impact of this forming process on the properties of the end product.

Previous knowledge

An introduction course on Materials Engineering.

Identical courses

H04V8A: Omvormtechnologie

Onderwijsleeractiviteiten

Forming Technology (B-KUL-H0R73a)

3 ECTS : Lecture 20 Second termSecond term

Content

After a short introduction into some aspects of plastic deformation (chapter 1) a systematic description of the main primary deformation processes (wire drawing, rolling, extrusion and forging) is provided (chapter 2). Chapter 3 is devoted to sheet metal forming (deep drawing, bending and folding, stretching). At the end of this chapter a short case study on the production of beverage cans is presented.. In chapter 4 some special forming techniques such as superplastic forming, hydroforming and powder metallurgy are studied.
The main emphasis in this course is on "macroscopic aspects" such as tools, description of the deformation,  forces, etc... but on many occasions the influence of deformation on the microstructure of the metal and the consequences of this microstructural changes on the mechanical properties of the product are studied. In many modern metal forming processes not only the macroscopic shape change is important, but also some particular properties must be obtained. This can be  achieved by careful control of the microstructure. This is called "thermo-mechanical processing" and some examples are treated in chapter 5.

Course material

B. Verlinden
'Plastische vormgevingsprocessen'  VTK-Leuven, 2003.

The slides used during the lectures are available on Toledo

Evaluatieactiviteiten

Evaluation: Forming Technology (B-KUL-H2R73a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions, Closed questions
Learning material : Course material, Calculator

ECTS Aircraft Materials (B-KUL-H0R74A)

4 ECTS English 41 Second termSecond term Cannot be taken as part of an examination contract
Ivens Jan (coordinator) |  Ivens Jan |  Vrancken Bey

Aims

- To understand how the properties of metals are related to their composition and microstructure.

- To apply these concepts to gain insight into the mechanical behaviour of metal alloys used in aircraft construction.

- To understand how the properties of composite materials are related to the properties of the constituent materials, and to be able to calculate these properties using quantitative models.

- To acquire knowledge about the constituent materials, the production processes and the in service properties of composites,

- Being able to apply the knowledge to design a laminate subject to a simple load condition

- To be able to apply the knowledge to solve simple problems related to the relation material composition - production technique - product properties.

Identical courses

H04Z6B: Vliegtuigmaterialen
H04Z6C: Vliegtuigmaterialen en productietechnieken voor composieten
H0R77A: Aircraft Materials and Processing Technology for Composites

Onderwijsleeractiviteiten

Aircraft Materials: Part Composite Materials (B-KUL-H0R74a)

2.5 ECTS : Lecture 18 Second termSecond term

Content

1. Fibers:

  • Production and properties of carbon fibers and glass fibers
  • Properties of polymer fibers and natural fibers


2. Matrices:

  • Thermosets and thermoplastics
  • Significance and properties of the matrix


3. Micromechanics of composites:

  • Micromechanics of unidirectional continuous fiber composites: models for stiffness and strength
  • Micromechanics of composites with short (broken) fibers


4. Mesomechanica composites:

  • Laminate theory for layered materials: prediction of stiffness and stress distribution
  • Hygrothermal tensions
  • Fracture criteria and prediction of first ply failure and laminate strength


5. Mechanical characterization of composites

6. Hybrid materials:

  • Concepts of hybridization
  • Fiber-metal laminates
  • Sandwich materials: composition and properties


7. Production of composites:

  • Basis of production: impregnation and consolidation
  • Fundamental aspects of the production of thermoset composites
  • Fundamental aspects of the production of thermoplastic composites
  • Preforms, compounds and prepregs
  • Production techniques on the basis of prepregs
  • Other production techniques


8. Use Properties of composites:

  • Fracture toughness: definition and interlaminar fracture toughness; Ways to increase the fracture toughness of composites
  • Impact behaviour: definition of impact, characterization of impact damage properties after impact
  • Fatigue: damage development and stiffness degradation
  • Environmental influences: the influence of humidity and temperature

Course material

Slides + video recordings are available on Toledo

Aircraft Materials: Part Metals (B-KUL-H0R75a)

1 ECTS : Lecture 8 Second termSecond term

Content

  • Revision of the principles that are used in order to improve mechanical properties of metals, in particular the yield strength and tensile strength:

- Link between dislocation movement and yield strength
- Several strengthening mechanisms

  • Applications on:

- Aluminum, with particular attention to precipitation hardening, and the new Al-Li-alloys
- Titanium
- Magnesium (short)
- Special (stainless) kinds of steel

Course material

Slides

Aircraft Materials: Laboratory Sessions (B-KUL-H0R76a)

0.5 ECTS : Practical 15 Second termSecond term

Content

The exercises are additions to the lectures.
The practice sessions are filled with guided exercises on computer mechanics of composite materials, using ESACOMP.

Course material

Excercise bundle

The students have access to student version of ESACOMP, either through download via the Altair Website, or using a proxy to connect to KU Leuven servers

 

Evaluatieactiviteiten

Evaluation: Aircraft Materials (B-KUL-H2R74a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : List of formulas, Calculator, Computer

Explanation

The evaluation consists of a completely written exam

 

The questions cover both the metals section and the composite materials section.

  • The metals portion has a weight of 30%
  • The composite materials portion has a weight of 70%:

              - 30%: computer exercise using ESACOMP. The solution method, which should illustrate the understanding of the mechanical behavior of composite laminates, is the most important evaluation criterion

              - 40%: other questions about the composite part

 

The Formulary and material data for ESACOMP have been added to the exam copy.

 

 

ECTS Aircraft Materials and Processing Technology for Composites (B-KUL-H0R77A)

4 ECTS English 34 Second termSecond term Cannot be taken as part of an examination contract

Aims

- To understand how the properties of metals are related to their composition and microstructure.

- To apply these concepts to gain insight into the mechanical behaviour of metal alloys used in aircraft construction.

- To possess advanced and up-to-date scientific knowledge on composites

- To apply this knowledge on composites to solve a scientific-technological problem

- To further extend this knowledge in an independent manner to solve a scientific-technological problem

- To demonstrate a systematic approach to analyse a scientific-technological problem, develop and execute a work plan, involving both research and engineering (design) aspects

- To demonstrate a critical attitude towards the problem and the results obtained

- To demonstrate the ability to work in a team and take up responsibility in the team to execute the work plan

Identical courses

H04Z6B: Vliegtuigmaterialen
H04Z6C: Vliegtuigmaterialen en productietechnieken voor composieten
H0R74A: Aircraft Materials

Is included in these courses of study

Onderwijsleeractiviteiten

Aircraft Materials: Part Metals (B-KUL-H0R75a)

1 ECTS : Lecture 8 Second termSecond term

Content

  • Revision of the principles that are used in order to improve mechanical properties of metals, in particular the yield strength and tensile strength:

- Link between dislocation movement and yield strength
- Several strengthening mechanisms

  • Applications on:

- Aluminum, with particular attention to precipitation hardening, and the new Al-Li-alloys
- Titanium
- Magnesium (short)
- Special (stainless) kinds of steel

Course material

Slides

Is also included in other courses

H0R74A : Aircraft Materials

Design and Applications of Polymers and Composites: Lecture (B-KUL-H0S59a)

2.4 ECTS : Lecture 13 Second termSecond term

Content

The introduction lectures focuses on the bottlenecks of polymers and composites in (semi-) structural applications. What are the rules and guidelines that have to be taken into account? The importance of fully integrated design, component integration, avoiding metal mimicking, … The next lectures focus on practically relevant aspects of designing polymer and composite applications, such as

- Time dependent behavior of polymers
- Design with polymers: displacement controlled design, non-linearity, rib stiffening and strengthening
- Dimensional aspects of short fiber composites: warping and thermal expansion
- Sandwich materials: design, connections and long term behavior
- Design and optimization of joints
- Maintenance and repair of composites
 

Course material

slides and background documents are made available on Toledo

Format: more information

Report

You will have to demonstrate your ability to apply the information of the lectures in a practical case. The case will be related to polymers or composites

 

Design and Applications of Polymers and Composites: Case Studies (B-KUL-H0S60a)

0.6 ECTS : Assignment 13 Second termSecond term

Content

Based on an actual industrial problem, students must (re)engineer a polymer or a composite component, in groups of 3-5 students. A redundant number of topics will be presented to the students.

The students are responsible for the work flow and internal & external contacts. Teaching staff is available for discussion and feedback.

Summary progress reports are sent to the teaching staff on a two-weekly basis.

A short 20 page report must be written of the case study and submitted 1 week before the examination date.

Course material

background documentation will be shared through Toledo or Teams, in case of confidential projects.

Evaluatieactiviteiten

Evaluation: Aircraft Materials and Processing Technology for Composites (B-KUL-H2R77a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Written, Report
Type of questions : Open questions
Learning material : List of formulas, Calculator

Explanation

  • Part on metals: written exam (open questions)

Weight: 30%

 

  • Part design and applications of polymers and composites

Written (team):

The project report is evaluated, both on form and content.
Form: style of writing (academic), lay-out and structure of the text
Content: description of the case, goal and work plan, discussion of the different steps, conclusions and future work
Weight: 35%

 

  • Oral (individual, the exam can be organised both on-campus and online):

You will asked questions to gauge your understanding of the report and the work done.
Weight: 35%

Information about retaking exams

  • Part metals: identical
  • Part design and applications of polymers and composites:
  • For the second exam chance; each student is expected to perform some additional research and engineering (this must be discussed with the teaching staff as soon as possible) and is required to rewrite the report. The report must be resubmitted one week before the oral exam. The exam itself will follow the same procedure and grade distribution as the first exam

ECTS Helicopters (B-KUL-H0R78A)

4 ECTS English 28 Second termSecond term Cannot be taken as part of an examination contract

Aims

Where : Koninklijke Militaire School Brussels.

  • Understanding of extensive subject matter in the field of Engineering and Military Sciences
  • Applying relevant and valid information to devise arguments, solve complex problems, formulate recommendations, and/or make decisions in the field of Engineering and Military Sciences
  • Applying language and communication skills efficiently: communicating in writing his/her conclusions, knowledge, and the rationale underpinning these
  • Applying language and communication skills efficiently: communicating orally his/her conclusions, knowledge, and the rationale underpinning these
  • Thinking critically and acting scientifically: formulating a judgement on the grounds of critical thinking and an evidence-based approach
  • Thinking critically and acting scientifically: deciding on the grounds of critical thinking and an evidence-based approach
  • Acting autonomously: gathering and interpreting relevant information from the different disciplines to devise a sound judgement, solve a complex problem, and/or decide
  • Acting autonomously: practicing an attitude of lifelong learning

Identical courses

H03Y4A: Helikopters

Onderwijsleeractiviteiten

Helicopters: Lecture (B-KUL-H0R78a)

3.28 ECTS : Lecture 18 Second termSecond term

Content

  • The hovering helicopter
  • Factors affecting hover
  • The vertical flight
  • Momentum theory of forward flight
  • The blade element method in forward flight
  • Performance estimates
  • Performance characteristics
  • Rotor flapping characteristics
  • Trim and static stability
  • Main rotor design considerations
  • Airfoils for rotor blades
  • Anti-torque systems
  • Empennages and wings
  • Preliminary design,
  • Other configurations
  • Helicopter noise
  • Helicopter vibration
  • Helicopter accidents

Course material

Course notes (electronic or printed)

Helicopters: Laboratory Sessions (B-KUL-H0R79a)

0.72 ECTS : Practical 10 Second termSecond term

Content

Open and closed tasks.

Course material

Course notes (electronic or printed)

Evaluatieactiviteiten

Evaluation: Helicopters (B-KUL-H2R78a)

Type : Exam outside of the normal examination period
Description of evaluation : Written

Explanation

The professor arranges an examination moment with the students, within or outside the standard examination period

 

ECTS Entrepreneurship in de praktijk / in practice (B-KUL-H0T39A)

3 studiepunten Nederlands 60 Tweede semesterTweede semester Uitgesloten voor examencontract
Pontikes Yiannis (coördinator) |  Van Hertem Dirk |  N. |  Pontikes Yiannis (plaatsvervanger) |  Ranga Adrian (plaatsvervanger)

Doelstellingen

Het doel van dit project is het opdoen van relevante ervaring rond ondernemerschap. Zo verwerft de student een beter inzicht in de praktische aspecten van het ondernemen.

Bij het voltooien van dit opleidingsonderdeel:

  • Kan de student ondernemerschap in praktische situaties toepassen.
  • Kan de student ondernemend handelen, door een idee om te zetten in de praktijk.
  • Is de student gegroeid in een aantal vaardigheden, zoals creativiteit tonen, innoveren, risico’s nemen, het plannen en organiseren van taken zodat de deliverables tijdig gerealiseerd worden, …
  • Kan de student over de uitgevoerde taken schriftelijk en mondeling verslag uitbrengen.
  • Kan de student reflecteren over zijn eigen functioneren binnen een project.

Begintermen

De student gaat zelfstandig op zoek naar een mogelijk project (bijvoorbeeld AFC, AFD, bij LCIE of deelname aan een ondernemingswedstrijd). Dit kan zowel binnen de non-profit sector als binnen de private sector.

De student dient een projectaanvraag in. Na goedkeuring kan de student dit opleidingsonderdeel in het ISP opnemen. Voor meer informatie: zie de website https://eng.kuleuven.be/studeren/engineering-essentials/stages/entrepreneurship-in-de-praktijk

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Entrepreneurship in de praktijk / in practice (B-KUL-H0T39a)

3 studiepunten : Opdracht 60 Tweede semesterTweede semester
Van Hertem Dirk |  N. |  Pontikes Yiannis (plaatsvervanger) |  Ranga Adrian (plaatsvervanger)

Inhoud

De student verwerft ervaring over diverse facetten van ondernemerschap en ontwikkelt managementvaardigheden via participatie aan advies- en implementatieprojecten.

 

Het project moet verband houden met de opleiding tot ingenieur en voor aanvang inhoudelijk worden goedgekeurd door de coördinator van het OPO.

 

Voor de praktische regeling gelden de volgende richtlijnen:

  • De student zoekt zelf een project.
  • De student zorgt voor een correcte afhandeling van de nodige documenten, zoals een projectaanvraag, een tussentijdse rapportering, een contract indien nodig, …

Studiemateriaal

Geen

Toelichting werkvorm

Uitvoeren van creatieve en kwaliteitsvolle projecten voor een start-up, vzw, KMO, NGO, … Deze projecten hebben een duurtijd van één semester tot één jaar en kunnen, afhankelijk van het project, individueel of in teams worden uitgewerkt.

Evaluatieactiviteiten

Evaluatie: Entrepreneurship in de praktijk / in practice (B-KUL-H2T39a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Verslag, Presentatie

Toelichting

De evaluatie gebeurt aan de hand van een schriftelijke en mondelinge rapportering in overeenstemming met volgende richtlijnen.

Het verslag telt 10 tot 15 bladzijden en bestaat uit vier delen:

  • Deel A: situeert het project en bevat de administratieve gegevens: naam student, opleiding van student (inclusief fase en optie), naam project, periode, naam en contactgegevens van eventuele academische begeleider/projectleider (o.a. e-mailadres en telefoonnummer).
  • Deel B: omschrijft het project (de opdracht, het verloop en de behaalde resultaten). De student geeft telkens aan wat zijn taak precies geweest is.
  • Deel C: het reflectiegedeelte over de ervaring van de student. Deze bevat onder andere:
    • Kritische reflectie over de competenties die de student verwachtte te verbeteren (voeg die lijst als bijlage toe aan het verslag).
    • Relatie project en opleiding. Welke inhoud van welke opleidingsonderdelen is aan bod gekomen tijdens het project? Was die inhoud aangepast aan wat er nodig was?
  • Deel D: conclusies die uit het project getrokken werden. Zijn de doelen van het project bereikt? Was het project een meerwaarde voor de student?

De student dient dit verslag minstens een week voor de presentatie in.

Opmerking: indien de student herhaaldelijk of op ernstige wijze de verplichtingen vastgelegd in de projectaanvraag niet nakomt, kan de deelname aan het project worden stopgezet en wordt de eindbeoordeling voor het opleidingsonderdeel NA (niet afgelegd).

Toelichting bij herkansen

Indien het project als onvoldoende wordt beoordeeld, zal de student de verslaggeving moeten uitbreiden/verbeteren voor een evaluatie in de derde examenperiode. Het project zelf kan niet hernomen worden.

ECTS Drive Systems (B-KUL-H0T48A)

6 ECTS English 56 Second termSecond term Cannot be taken as part of an examination contract

Aims

Insight in the construction, functioning and use of drives on the basis of electrical actuators, completed with power electronics, sensors and controls. This course is intended for system-integrated engineers who have to use these drives in global systems. 

Identical courses

H9X39A: Aandrijfsystemen

Onderwijsleeractiviteiten

Electrical Drives: Lecture (B-KUL-H04A5a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Basic Concepts of control, measuring, mechanical couplings and power electronics for drives 
• Classification of electric actuators and characterization of loads 
• DC drives: stationary and transient behavior, and construction and setting of control loops (torque, speed, position control) 
• AC drives: 
o Induction Machines 
   - Scalar control: subsynchronous cascade, U / f control, field weakening 
   - Derivation and implementation field oriented (FOC) and direct torque control (DTC) 
o Synchronous machine types 
  - Synchronous machines with emphasis on permanent magnet machines with sinusoidal control 
  - Brushless DC Machine 
  - Switched-reluctance machine 
  - Stepper motors 
• Servo drives 
• Linear actuators 
• Selection of applications, in accordance with each of the machine types: electric transportation (hybrid and electric vehicles, trains), 
   electrical energy (variable-speed wind turbines), robotics 
• Implementation aspects 
o Sensors (e.g. speed) 
o Digital DSP system implementation 
o Parasitic problems including thermal management, electromagnetic compatibility, power quality, noise and vibration 
o Energetic aspects: efficiencies 
  The exercises and laboratory sessions focus on demonstrating the different drives based on real systems. Students optimize at least one type of drive starting calculations, from simulation to verification in lab.      

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Electrical Drives: Exercises and Laboratory Sessions (B-KUL-H04A7a)

0.59 ECTS : Practical 10 Second termSecond term

Mechatronic Drive Systems: Lectures (B-KUL-H0T48a)

2.7 ECTS : Lecture 18 Second termSecond term

Content

Mechatronics and motion control systems
Aspects of dynamics and control 
Actuators in mechatronics systems

Transduction: basics and constitutive equations
Sensing/actuating; concomitance
Impedance matching
Figures of merit
classification


Piezoelectric actuators
Shape-memory-alloy actuators
Magnetostrictive actuators
Electro- and magnetorheological fluid actuators
Other emerging actuator technologies
Research trends and application trends 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

-Textbook
- PDF presentations
-Toledo

Format: more information

The students memorise the basic characteristics of mechatronics systems and actuator systems.
They are able to analyse critically the structure of a mechatronics system and select most suitable type of actuator for the application.
They have sufficient background to design and dimension an actuator/system. They can calculate/estimate the bandwidth of a mechatronics system.

Is also included in other courses

H0T49A : Mechatronic Drive Systems

Mechatronic Drive Systems: Exercises (B-KUL-H0T49a)

0.3 ECTS : Practical 10 Second termSecond term

Content

Exercise sheets, which are made available on Toledo. These are worked out in three--four tutorial seessions, guided by an assistent. 

Format: more information

The exercises are available beforehand to students on Toledo. Three tutorial sessions are foreseen where the students are instructed by an assistant to train them in solving the problems.

Is also included in other courses

H0T49A : Mechatronic Drive Systems

Evaluatieactiviteiten

Evaluation: Drive Systems (B-KUL-H2T48a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Calculator, Course material

Explanation

This exam consists of two parts, matching both teaching activities of the course. The final mark is the average of the marks on both course components.

  • Electrical drives: Written exam, open book. The lab sessions are compulsory and are evaluated during the sessions themselves and count proportionally to the number of study points.
     
  • Mechatronic drives: open book, simple calculator allowed.
     

 

Information about retaking exams

Retaking the exam is always about both components of the course. It is not possible to retake lab sessions. The examination system for the third examination period is identical to that of the second examination period.

ECTS Mechatronic Drive Systems (B-KUL-H0T49A)

3 ECTS English 28 Second termSecond term

Aims

The student is able to analyse the elements and structure of mechatronics systems; in particular emerging actuation technologies such as piezo, magnetostrictive, shape-memory, electro-rheological, actuators. Particular attention is paid to the integration aspects, such as interaction of the actuator with the mechanical system, modelling and dimensioning. 

To acquaint the student concretely with the course material through practical exercises. These cover the most salient topics of the course and range from simple argumentation on system properties to design, (Matlab) calculation and dimensioning.

Previous knowledge

The student should also take, or has already taken H04S6A (Mechanical drives). Knowledge of system dynamics and elementary control theory is an asset.

Order of Enrolment



SIMULTANEOUS(H04S6A ) OR SIMULTANEOUS(H00R7A ) OR SIMULTANEOUS(H04S6B)


H04S6AH04S6A : Mechanical Drive Systems
H00R7AH00R7A : Mechanische aandrijvingen
H04S6BH04S6B : Combustion Engines

Identical courses

H9X37A: Mechatronische aandrijfsystemen

Is included in these courses of study

Onderwijsleeractiviteiten

Mechatronic Drive Systems: Lectures (B-KUL-H0T48a)

2.7 ECTS : Lecture 18 Second termSecond term

Content

Mechatronics and motion control systems
Aspects of dynamics and control 
Actuators in mechatronics systems

Transduction: basics and constitutive equations
Sensing/actuating; concomitance
Impedance matching
Figures of merit
classification


Piezoelectric actuators
Shape-memory-alloy actuators
Magnetostrictive actuators
Electro- and magnetorheological fluid actuators
Other emerging actuator technologies
Research trends and application trends 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

-Textbook
- PDF presentations
-Toledo

Format: more information

The students memorise the basic characteristics of mechatronics systems and actuator systems.
They are able to analyse critically the structure of a mechatronics system and select most suitable type of actuator for the application.
They have sufficient background to design and dimension an actuator/system. They can calculate/estimate the bandwidth of a mechatronics system.

Is also included in other courses

H0T48A : Drive Systems

Mechatronic Drive Systems: Exercises (B-KUL-H0T49a)

0.3 ECTS : Practical 10 Second termSecond term

Content

Exercise sheets, which are made available on Toledo. These are worked out in three--four tutorial seessions, guided by an assistent. 

Format: more information

The exercises are available beforehand to students on Toledo. Three tutorial sessions are foreseen where the students are instructed by an assistant to train them in solving the problems.

Is also included in other courses

H0T48A : Drive Systems

Evaluatieactiviteiten

Evaluation: Mechatronic Drive Systems (B-KUL-H2T49a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, Calculator

Explanation

 open book, simple calculator allowed.

 

Information about retaking exams

The examination system for the third examination period is identical to that of the second examination period.

ECTS Tribology (B-KUL-H0T50A)

3 ECTS English 25 Second termSecond term

Aims

This course aims to provide theoretical and practical knowledge on lubrication, friction and wear in machine construction, necessary in designing, maintaining and following up bearing systems, cog wheels and ridges and various other machine components. Each problem in mechanical engineering contains, as an important element, tribological phenomena: the student should be able to recognize these and successfully treat them. The course, among others, deals with the following topics:

  • Interaction between surfaces and friction theories
  • Tribological properties of solid matter and boundary layer lubrication
  • Lubrication properties and testing these
  • Hydrodynamic, hydrostatic and elastohydrodynamic lubrication
  • Interaction between bearers and mechanical systems: dynamic behaviour, with phenomena such as Stick-slip vibrations and whirl in axis blocks
  • Application in mechanical engineering, i.e. designing and selecting bearing systems

Identical courses

H9X58A: Tribologie

Onderwijsleeractiviteiten

Tribology: Lectures (B-KUL-H0T50a)

2.7 ECTS : Lecture 20 Second termSecond term

Content

General introduction

  • What is tribology?
  • History
  • Tribology in industry
  • Economic considerations
  • Tribological solutions: bearing systemsInteraction between surfaces
  • Surface-properties and measuring them: surface nature and structre, surface parameters, measuring surface parameters
  • Contact between surfaces: Hertzian contact, contact between rough surfaces
  • Mechanics of the rolling motion: free rolling, micro-slip, tire-road contact
  • Friction theories: measuring friction, possible causes of friction, discussion different theories on tribological properties of solid matter and boundary lubrication

 

Tribological properties of metals and surfaces

  • Boundary lubrication
  • Selflubricating materials
  • Types of solid lubricants
  • Tribological properties of elastomers

 

Lubricant properties and testing them

  • Viscosity: temperature and pressure dependence, non-Newtonian behaviour
  • Measuring viscosity
  • Lubricants
  • Lubricating grease

 

Hydrodynamic lubrication

  • Theory: derivation of the Reynolds equation
  • Application of the Reynolds equation on sliding bearings
  • Journal bearing
  • Traction in hydrodynamic films
  • Bearings with finite dimensions
  • Thermal influences
  • Gas bearings:

 

Hydrostatic lubrication

  • Externally powered bearings: principle and description
  • Flat hydrostatic bearings in different geometrical shapes
  • The necessity of compensation: types of compensators
  • Properties of compensated bearins
  • The hydrostatic axis block
  • Gas bearings (aerostatic: theory, design and properties
  • Squeeze-film effect

 

Elastohydrodynamic (EHD) lubrication: roll bearings and cog wheels

  • Contacts under heavy pressure
  • EHD theory: solutions for rolls and bullets
  • Comparison between theory and tests
  • Traction
  • Other aspects: fatigue, hysteresis, influence of lacking lubrication

 

Sealing

  • Types and functioning principles of sealers: dynamic, static, exclusion...
  • Dynamic sealings: contact sealings, cleft sealing
  • Static sealing: sealing rings, O-rings, sealing materials, bellows...
  • Design and selection of sealings

 

Damage and degradation in tribological components

  • Damage patterns: the significance of damage, damage analysis
  • Wear: types and forms, influence factors, testing aspects, avoiding wear, application in design
  • Damage in bearings: alien material, (surface)fatigue, erosion, corrosion, pitting, fretting...
  • Damage in cog wheels: surface fatigue, pitting, scuffing, abrasive wear...
  • Damage in friction surfaces: damage in brake bloks and circuits...
  • Damage in sealings: radial sealings, rubber, O-rings
  • Monitoring: methods for damage and wear detection in bearings
  • Maintenance

 

Interaction between bearings and mechanical systems: dynamic behaviour

  • Introduction
  • Stick-slip vibrations
  • Whirl in axis blocks
  • Influence of compressability: pneumatic hammering

 

Application in mechanical engineering

  • Designing and selecting bearing systems
  • Cog wheels and ridges
  • Applications in manufacturing processes

 

Various applications: sealings, dampers, friction dampters, human joints...

Course material

Book: R.D. Arnell, P. B. Davies, J. Halling, T. L. Whomes, "Tribology: Principles and Design Applications", (published at MacMillan). Slides. 

Tribology: Exercises (B-KUL-H0T51a)

0.3 ECTS : Assignment 5 Second termSecond term

Content

See contents of the lecture.

Evaluatieactiviteiten

Evaluation: Tribology (B-KUL-H2T50a)

Type : Exam outside of the normal examination period

Explanation

The evaluation is made on the basis of
(i) graded exercises throughout the semester (50%),
(ii) an assignment (per 1 or 2 students) at the end of the semester (50%).
(iii) Re-examination is possible in the case of failure at the first exam opportunity.

ECTS Aircraft MRO, Maintenance, Repair & Overhaul (B-KUL-H0T52A)

3 ECTS English 24 Not organisedNot organised

Aims

Provide insight and knowledge in procedures and rules of MRO (Maintenance, Repair & Overhaul) of aircrafts, both from the technical and economic side.

Previous knowledge

Basic knowledge of aircraft systems and instruments

Identical courses

H04U0A: Onderhoud van vliegtuigen

Is included in these courses of study

Onderwijsleeractiviteiten

Aircraft MRO, Maintenance, Repair & Overhaul: Lectures (B-KUL-H0T52a)

2.46 ECTS : Lecture 16 Not organisedNot organised

Content

Chapter 1: Regulations
• Introduction to authorities FAA, JAA and EASA, and the role of national authorities.
• Requirements relating to the design, operation, maintenance, marking competence and education & training.
• The JAA / EASA approach.
• Typical aspects of JAR-OPS1, -145, -66, -147

Chapter 2: Setting up a maintenance program (Airframe)
• Maintainability and the use of mock-ups.
• Maintenance: distribution and implementation.
• The Maintenance Review Board approach.
• Creating maintenance programs with MSG 2/3 method (Maintenance Steering Group).
• Reliability and Engine Condition Monitoring.
• Organisation line, light and heavy maintenance.

Chapter 3: Maintenance of engines and APUs
• Off-the-wing maintenance programme. Incoming inspection and table inspection.
• Organization of the workshop. Cleaning and NDT inspections. Repairing parts and their technologies: plasma spray, diffusion welding, water jet cutting, electro-erosion, laser technology, welding etc.
• engine test benches.
• Importance of traceability.
• Typical economic aspects such as scrappage, Material Review Board, bogus parts,
• PMA parts, lead (Turn Around Times).

Chapter 4: Maintenance of components
• The different technologies: engine components (pneumatic and fuel), hydraulic components, mechanical components, chassis.
• Lead times, waiting times, supplies.
• Workplace organization. Lean management.

Chapter 5: Flight safety
• Definition and perception. Statistics.
• Safety through prevention:
• Quality of design (redundancy)
• Quality of maintenance (reliability programs)
• Quality of education (human factor)
• Quality of organization and procedures (Safety Management System)

Chapter 6: Logistics
• Division into types of materials and their traceability. Interchange Ability. Certificates.
• Statistical methods for the quantities to stock. Service Level.
• Initial provisioning. Flight kits. Consignment stocks.
• Evaluation of suppliers. Vendor Rating.
• Stock Ring methods. AOG (Aircraft on Ground) procedure.
• Standard Exchange and Brokerage.

Chapter 7: Strategy / Marketing / Sales
• Conducting market studies. From new constructions to renovation. Evaluation of investments
• Types MROs with captive volume.
• Trends in the industry: new aircraft types, outsourcing, cyclicality, globalization, consolidation.
• Market mechanisms.
• Problems of the industry: dollar, man-hour costs, market volatility.
• Analysis and proposed solutions such as full support and niche products.
• Profitability.
• Time & material at fixed prices.
• Price erosion.

Aircraft MRO, Maintenance, Repair & Overhaul: Excursion (B-KUL-H0T53a)

0.54 ECTS : Field trip 8 Not organisedNot organised

Content

See content lectures.

Evaluatieactiviteiten

Evaluation: Aircraft MRO, Maintenance, Repair & Overhaul (B-KUL-H2T52a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : None

Explanation

The exam is entirely written and closed-book. The duration of the exam is two hours.

ECTS Automotive Structures and Vehicle Dynamics (B-KUL-H0T54A)

6 ECTS English 60 First termFirst term Cannot be taken as part of an examination contract
Naets Frank (coordinator) |  Desmet Wim |  Naets Frank

Aims

The course is connected to two basic elements of a vehicle: on the one hand, the vehicle body and the aspects which need to be taken into account during  the design of the body, and on the other, vehicle dynamics and the importance of suspension in the matter.
The aim is to offer knowledge on the design of vehicle bodies, with special attention to weight-saving constructions and safety aspects such as crumple zones and to acquire insight and knowledge concerning the dynamic behaviour of vehicles in particular in connection to longitudinal and transverse stability on the road. Attention will be lavished on the use of simulation packages, material models and modelling techniques that are used as 'industry standards' in the industry.

Previous knowledge

Knowledge of machine construction, numeral techniques, mechanical vibrations, kinematics and dynamics.

Identical courses

H05A1A: Voertuigconstructies en voertuigdynamica

Onderwijsleeractiviteiten

Automotive Structures and Vehicle Dynamics: Lecture (B-KUL-H0T54a)

4.5 ECTS : Lecture 34 First termFirst term

Content

- General construction and compartments (road transportation - rail transportation)
- Lightweight carriage: self-carrying - space frame, aluminium - steel - synthetics
- Power and energy flows in crashes
- Design of energy absorbin parts (crumple zones, longitudinal sleepers)
- Basic elements rigid body dynamics
- Longitudinal dynamics: power balance (drive/drive resistance, adhesion), dynamic characteristics of the drive line (clutch, transmission, differential, brakes), vehicle performance (acceleration - decelaration)
- transverse dynamics (drive stability), development of analytical models (linear 2-wheeled model) for course stability and sidewind sensitivity
- vehicle control: influence of steering wheel and wheel suspension - kinematics, weight division, camber, stabilizers, bushings...
- Influence of tires on vehicle behaviour: physics of the tire, longitudinal and transverse rol resistance, non-linear tire models, steady state and transient behaviour.
- Numeral simulation techniques for vehicle dynamics (principles and use)
- Active and semi-active suspension

Course material

Course notes and reference material available on the website.

Format: more information

Processing the theory and applying a numeral simulation package on a case.

Automotive Structures and Vehicle Dynamics: Exercises (B-KUL-H0T55a)

1.5 ECTS : Practical 26 First termFirst term

Content

See the contents of the lecture.

Course material

Assignment and additional material on Toledo.

Evaluatieactiviteiten

Evaluation: Automotive Structures and Vehicle Dynamics (B-KUL-H2T54a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material

Explanation

Open book exam and report on a case study.
Study assignment in which the students do research on a technologically state of the art vehicle, in groups of two or more students. They will write a report on this and present their findings to their fellow students.

ECTS Noise Abatement in Machines, Vehicles and Aircraft (B-KUL-H0T56A)

6 ECTS English 52 Second termSecond term Cannot be taken as part of an examination contract
Desmet Wim (coordinator) |  Desmet Wim |  Denayer Hervé (substitute) |  Pluymers Bert

Aims

The student acquires the necessary technical and theoretical knowledge to design low-noise machinery and vehicles and to provide adequate noise reducing measures on existing machinery and vehicles. The student is able to consult with sound experts and to assess noise reducing measures on their technical quality.
 
The student understands the principles and possibilities of numerical methods (FEM and BEM) for modeling the vibro-acoustic behavior of mechanical structures. He has experience with the use of state of the art commercial software, and evaluates the results obtained critically.

Previous knowledge

Students have mastered and are familiar with the dynamic behavior of (mechanical) systems and with the principles of the finite element method. The knowledge gained in the courses 'Beweging en trillingen' and 'Numerieke modellering in de mechanica' suffices.

Identical courses

H04R1A: Lawaaibeheersing bij machines, voertuigen en vliegtuigen

Onderwijsleeractiviteiten

Noise Abatement in Machines, Vehicles and Aircraft: Lecture (B-KUL-H0T56a)

4.54 ECTS : Lecture 30 Second termSecond term
Desmet Wim |  Denayer Hervé (substitute) |  Pluymers Bert

Content

This OLA (lectures) is mainly focused on getting physically substantiated insight into the sources of noise. On this basis, possible noise-reducing measures are studied, wherein both control noise at the source, along the transmission path, are considered at the level of the receiver.
The emphasis is mainly on the vibro-acoustic systems, wherein the interaction between sound waves and vibrations structure plays an important role. Specific attention is given to applications in the machinery and equipment and in the transportation sector (vehicles, aircrafts). Also, the standards and regulations mentioned are discussed.

The following topics are covered:

  • Basic concepts of technical acoustics
  • Principles of sound generation (air sound generation, fluid sound generation, construction noise generation)
  • Principles of sound transmission
  • Basic principles of noise control: at the source, on the path of transmission, to the receiver
  • Subjective sound perception and sound quality
  • Measurement and analysis of noise - standards and regulations
  • Numerical modeling in the technical acoustics basics: finite elements and boundary element method
  • Noise control in the transport sector: Sources of interior and exterior vehicle and aircraft noise, specific control measures, standards and regulations

Course material

Slides and additional course material (papers, …) on Toledo

Format: more information

Lectures, lab work, in which, on the basis of a number of cases, the problem of noise control in general and of suppression of engine noise and vehicle and aircraft noise, in particular, will be further explained and illustrated. Also, some noise reduction principles will be illustrated by means of state-of-the-art numerical simulation techniques to familiarize students with the use of such simulation techniques in low-noise design.
Processing of theory and application of numerical simulation techniques in a case study.

Noise Abatement in Machines, Vehicles and Aircraft: Exercises (B-KUL-H0T57a)

1.46 ECTS : Practical 22 Second termSecond term
Desmet Wim |  Denayer Hervé (substitute) |  Pluymers Bert

Content

Exercises in which the student is familiarized with the use of numerical simulation techniques for vibro-acoustic problems. To this purpose, a state of the art commercial software (Simcenter 3D) is used.

Format: more information

Practice sessions in which the student is familiarized with the use of a commercial software package (Sysnoise) and the interpretation of results. This package is then applied for modeling and simulating an actual case study that can be applied by the student. The student reports on this case with a report to be discussed at the exam.

Evaluatieactiviteiten

Evaluation: Noise Abatement in Machines, Vehicles and Aircraft (B-KUL-H2T56a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material

Explanation

The exam consists of two parts which contribute equally to the final grade: an open book examination and the discussion of the report on the case study with numerical simulation software (Simcenter 3D). Participation to both parts of the examination is mandatory. Only participating to one of the two examination activities or not handing in the report on time will result in a score NA for the whole course. In case one fails for the exam final grade, both parts of the examination need to be retaken unless the course responsibles decide otherwise based on the partial scores of the first examination.

Information about retaking exams

In case one fails for the exam final grade, both parts of the examination need to be retaken unless the course responsibles decide otherwise based on the partial scores of the first examination.

ECTS Structural Optimization (B-KUL-H0T88A)

3 ECTS English 20 Second termSecond term Cannot be taken as part of an examination contract

Aims

The student will acquire the following knowledge and skills during this course:

  • The student will be able to appreciate the need for numerical optimization to improve the efficiency of a structural design.
  • The student will be able to mathematically formulate a structural design optimization problem.
  • The student will have an understanding of the most useful design optimization techniques.
  • The student will be able to use these techniques for practical size, shape, and topology optimization problems.

Previous knowledge

Knowledge: the student knows the theoretical background of the finite element method.

Skills: the student is able to use the finite element method to analyze structures under static loading and has MATLAB experience.

Order of Enrolment



SIMULTANEOUS(H9X20A) OR SIMULTANEOUS(H04M0B) OR SIMULTANEOUS(H0N67A) OR SIMULTANEOUS(H00R8A) OR SIMULTANEOUS(H04U3A)


H9X20AH9X20A : Finite Elements, Part 1: Frame Structures
H04M0BH04M0B : Finite Elements
H0N67AH0N67A : Eindige elementen
H00R8AH00R8A : Numerieke modellering in de mechanica
H04U3AH04U3A : Numerical Modelling in Mechanical Engineering

Is included in these courses of study

Onderwijsleeractiviteiten

Structural Optimization: Lectures (B-KUL-H0T88a)

3 ECTS : Lecture 20 Second termSecond term

Content

The course consists of 10 lectures of 2 hours including small exercises where students solve simple problems in MATLAB. The syllabus can be summarized as follows:

  • Motivation for structural design optimization. Size, shape, topology optimization. Size optimization vs. fully stressed design. Shape optimization vs. formfinding.
  • Formulation of a structural design optimization problem. Continuous vs. discrete problems, convex vs. non-convex problems, nested approach vs. simultaneous analysis and design.
  • Optimization algorithms. Gradient-based algorithms vs. metaheuristic algorithms.
  • Design sensitivity analysis. Finite differences, direct differentiation, adjoint differentiation.
  • Size optimization. Minimum compliance problems, stress constraints, displacement constraints, buckling constraints, practical constraints. Combining large numbers of constraints.
  • Formfinding by means of the dynamic relaxation method. Bar and surface structures, viscous and kinetic damping.
  • Shape optimization. CAD-based vs. finite element based parameterization, regularization techniques, semi-analytical design sensitivities.
  • Topology optimization. Ground structure approach, density-based approach, filtering and projection techniques.
  • Impact of uncertainties, robust design optimization.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Evaluatieactiviteiten

Evaluation: Structural Optimization (B-KUL-H2T88a)

Type : Continuous assessment without exam during the examination period

Explanation

The evaluation is based on an assignment to be solved in groups of 2 students using MATLAB.

Information about retaking exams

Given the specific evaluation form, no alternative exam over the entire course content is organized during the September examination period for those students, who were not active in the course during the academic year or who only participated in a limited way to the course. For students who have showed a sufficient contribution, it will be investigated how an alternative examination can be organized.

ECTS Entrepreneurship in practice / service-learning (B-KUL-H0T91A)

6 studiepunten Nederlands 0 Tweede semesterTweede semester Uitgesloten voor examencontract
Pontikes Yiannis (coördinator) |  Van Hertem Dirk |  N. |  Pontikes Yiannis (plaatsvervanger) |  Ranga Adrian (plaatsvervanger)

Doelstellingen

Concrete leerdoelen

 

Het doel van dit project is het opdoen van een relevante ervaring rond (sociaal) ondernemerschap. Zo verwerft de student een beter inzicht in de praktische aspecten van het ondernemen.

 

Bij het voltooien van dit opleidingsonderdeel:

  • Kan de student ondernemerschap in praktische situaties toepassen.
  • Kan de student ondernemend handelen, door een idee om te zetten in de praktijk.
  • Is de student gegroeid in een aantal vaardigheden, zoals creativiteit tonen, innoveren, risico’s nemen, het plannen en organiseren van taken zodat de deliverables tijdig gerealiseerd worden, actief luisteren en inspelen op de noden van de betrokken actoren, …
  • Is de student in staat om in een multidisciplinair team te werken en te communiceren met mensen van andere disciplines over de eigen discipline.
  • Kan de student over de uitgevoerde taken schriftelijk en mondeling verslag uitbrengen.
  • Kan de student reflecteren over zijn eigen functioneren binnen een project, de sociaal-maatschappelijke dienstverlening en de rol van technologie in het streven naar een duurzamere en inclusievere samenleving.

 

Bredere vormingsdoelen

 

  • De student verwerft waarden als integriteit, eerlijkheid, beoordelingsvermogen en inlevingsvermogen, en leert deze waarden toepassen.
  • De student ontwikkelt een sociaal-maatschappelijk verantwoordelijkheidsgevoel.
  • De student wordt zich bewust van het eigen denkkader, door middel van concrete en authentieke ervaringen.

Begintermen

Elke masterstudent die bereid is om een ondernemingsproject op te nemen, kan een aanvraag indienen. Omdat er een verscheidenheid aan projecten bestaat, hanteren we volgende werkwijze. De student gaat zelfstandig op zoek naar een mogelijk project (bijvoorbeeld via PiP, AFD, Humasol of Cera Award). Vervolgens dient de student een projectaanvraag in. Na goedkeuring kan dit opleidingsonderdeel in het ISP opgenomen worden. Voor meer informatie: zie de website: https://eng.kuleuven.be/studeren/engineering-essentials/stages/entrepreneurship-in-de-praktijk.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Entrepreneurship in practice / service-learning (B-KUL-H0T91a)

6 studiepunten : Opdracht 0 Tweede semesterTweede semester
Van Hertem Dirk |  N. |  Pontikes Yiannis (plaatsvervanger) |  Ranga Adrian (plaatsvervanger)

Inhoud

De student verwerft ervaring over diverse aspecten van (sociaal) ondernemerschap en ontwikkelt managementvaardigheden via participatie aan advies- en implementatieprojecten.

 

Het project moet verband houden met de opleiding tot ingenieur en voor aanvang inhoudelijk worden goedgekeurd door de coördinator van het opleidingsonderdeel.

 

Voor de praktische regeling gelden de volgende richtlijnen:

  • De student zoekt zelf een project.
  • De student zorgt voor een correcte afhandeling van de nodige documenten, zoals een projectaanvraag, een tussentijdse rapportering, een contract indien nodig, …

Studiemateriaal

Praktijkervaringen

Toelichting werkvorm

Uitvoeren van creatieve en kwaliteitsvolle projecten voor een start-up, vzw, KMO, NGO, … Deze projecten hebben een duurtijd van één semester tot één jaar en kunnen, afhankelijk van het project, individueel of in teams uitgewerkt worden.

 

Studenten die deelnemen aan een project rond sociaal ondernemerschap/service-learning, worden gevraagd om ook aan enkele intervisiemomenten deel te nemen. Service-learning is een didactische aanpak waarbij studenten een concreet maatschappelijk engagement aangaan en deze ervaring door middel van reflectie koppelen aan academische leerinhouden en persoonlijke en maatschappelijke vormingsdoelen. Voor meer informatie, zie https://www.kuleuven.be/onderwijs/sl.

 

Academische component:

Tijdens een ondernemingsproject past de student (disciplinespecifieke) kennis uit zijn opleiding toe en staat hij o.a. stil bij de rol van technologie in het streven naar een duurzamere en inclusievere samenleving en de link tussen zijn opleiding en sociaal-maatschappelijke dienstverleningen.

 

Praktijkcomponent:

De student doet een relevante ervaring over (sociaal) ondernemerschap op, waarbij hij in een interdisciplinair team werkt. Dit kan via verschillende kanalen:

  • deelname aan een jaarproject van Academics for Development (AFD), een organisatie die studenten de mogelijkheid biedt om een sociale impact in het zuiden te hebben;
  • een jaarproject rond ontwikkelingssamenwerking via de organisatie Humasol rond de thema's hernieuwbare energie, water en duurzame technologie;
  • deelname aan andere sociaal-maatschappelijk geëngageerde projecten en social profit organisaties via Cera Award;
  • een jaarproject met PiP (Product Innovation Project) om een innoverend product te creëren;
  • eventueel via een andere partnerorganisatie, na grondig overleg met de coördinator van het opleidingsonderdeel.

 

Reflectiecomponenten:

De student wordt gevraagd om in een tussentijds en eindverslag o.a. te reflecteren over de relatie tussen het project en zijn opleiding, en de competenties die hij verwachtte te verbeteren (die werden in de aanvraag gevraagd). Doorheen het academiejaar wordt de student door een coach van de partnerorganisatie begeleid en bv. gevraagd om na te denken over de eigen rol en mogelijkheden binnen het project en welke acties hij in de toekomst inzake maatschappelijke en/of sociale problemen kan ondernemen.

Evaluatieactiviteiten

Evaluatie: Entrepreneurship in practice / service-learning (B-KUL-H2T91a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Ontwerp/Product, Verslag, Presentatie

Toelichting

De evaluatie gebeurt aan de hand van een schriftelijke en mondelinge rapportering in overeenstemming met volgende richtlijnen.

 

De student stelt een tussentijds- en eindverslag op.

 

Het tussentijds verslag bestaat uit een inhoudelijke/technische omschrijving van het project enerzijds en een reflectie over de competenties die de student verwachtte te verbeteren anderzijds (deze werden in de aanvraag gevraagd). Elk deel mag maximum uit één A4 bestaan en kan in puntjes geschreven worden.

 

Het eindverslag telt 10 tot 15 bladzijden. Een mogelijke indeling van het verslag is:

  • Deel A: situeert het project en bevat de administratieve gegevens: naam student, opleiding van student (inclusief fase en optie), naam project, periode, naam en contactgegevens van eventuele academische begeleider/projectleider (o.a. e-mailadres en telefoonnummer).
  • Deel B: omschrijft het project (de opdracht, het verloop en de behaalde resultaten). De student geeft telkens aan wat zijn taak precies geweest is.
  • Deel C: het reflectiegedeelte over de ervaring van de student. Deze bevat onder andere:

               - Kritische reflectie over de competenties die de student verwachtte te verbeteren (voeg die lijst als bijlage aan het verslag toe).

               - Relatie project en opleiding. Welke inhoud van welke opleidingsonderdelen is aan bod gekomen tijdens het project? Was die inhoud aangepast aan wat er nodig was?

               - Relatie project en maatschappij.

  • Deel D: conclusies die uit het project getrokken werden. Zijn de doelen van het project bereikt? Was het project een meerwaarde voor de student?

 

Het verslag moet minstens een week voor de presentatie ingediend worden. Het project dient als een wetenschappelijke tekst omschreven te worden. Het reflectiegedeelte (deel C) mag wel persoonlijk geschreven zijn.

 

De presentatie duurt 15 à 20 minuten. Nadien wordt er tijd voorzien voor vragen.

 

Wanneer verschillende studenten aan hetzelfde project gewerkt hebben, mag het verslag deels collectief geschreven worden. De studenten dienen wel duidelijk aan te geven wie voor welk deel verantwoordelijk was. De reflectie over o.a. de competenties die zij tijdens het project beoogden te verwerven moet individueel gebeuren. De presentatie mag ook samen gegeven worden, zolang iedereen een deel geeft. Er mag dan langer gepresenteerd worden (tot 30 minuten).

 

Opmerking: indien de student de gemaakte afspraken en verplichtingen niet op correcte wijze nakomt, kan de deelname aan het project stopgezet worden en wordt de eindbeoordeling voor het opleidingsonderdeel NA (niet afgelegd).

Toelichting bij herkansen

 

ECTS Electrical Drives (B-KUL-H9X30A)

3 ECTS English 28 Second termSecond term Cannot be taken as part of an examination contract

Aims

Insight into the construction, functioning and use of drives on the basis of electrical actuators, completed with power electronics, sensors and controls. This course is intended for system-integrated engineers who will have to use these drives in global systems.

Previous knowledge

Knowledge: Basic concepts of system theory, notions of control technology, basic knowledge of electrical machines
Preliminary conditions: system theory and control theory.

Is included in these courses of study

Onderwijsleeractiviteiten

Electrical Drives: Lecture (B-KUL-H04A5a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Basic Concepts of control, measuring, mechanical couplings and power electronics for drives 
• Classification of electric actuators and characterization of loads 
• DC drives: stationary and transient behavior, and construction and setting of control loops (torque, speed, position control) 
• AC drives: 
o Induction Machines 
   - Scalar control: subsynchronous cascade, U / f control, field weakening 
   - Derivation and implementation field oriented (FOC) and direct torque control (DTC) 
o Synchronous machine types 
  - Synchronous machines with emphasis on permanent magnet machines with sinusoidal control 
  - Brushless DC Machine 
  - Switched-reluctance machine 
  - Stepper motors 
• Servo drives 
• Linear actuators 
• Selection of applications, in accordance with each of the machine types: electric transportation (hybrid and electric vehicles, trains), 
   electrical energy (variable-speed wind turbines), robotics 
• Implementation aspects 
o Sensors (e.g. speed) 
o Digital DSP system implementation 
o Parasitic problems including thermal management, electromagnetic compatibility, power quality, noise and vibration 
o Energetic aspects: efficiencies 
  The exercises and laboratory sessions focus on demonstrating the different drives based on real systems. Students optimize at least one type of drive starting calculations, from simulation to verification in lab.      

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Electrical Drives: Exercises and Laboratory Sessions (B-KUL-H04A7a)

0.59 ECTS : Practical 10 Second termSecond term

Evaluatieactiviteiten

Evaluation: Electrical Drives (B-KUL-H2X30a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material

Explanation

Written exam, open book. The lab sessions are compulsory and are evaluated during the sessions themselves and count proportionally to the number of study points.

Information about retaking exams

Retaking the exam is always about both components of the course. It is not possible to retake lab sessions. The examination system for the third examination period is identical to that of the second examination period.

ECTS Micro-electromechanical Systems (B-KUL-H9X38A)

3 ECTS English 25 Second termSecond term Cannot be taken as part of an examination contract

Aims

The student is able to explain the major concepts, characteristics and features of MEMS technology with repect to the field of research, the possibilities and the most important fields of application.

Previous knowledge

Basic knowledge on machine elements, machine design and manufacturing technology

Is included in these courses of study

Onderwijsleeractiviteiten

Micro-electromechanical Systems: Theory Lecture (B-KUL-H04T7a)

2.7 ECTS : Lecture 20 Second termSecond term

Content

The contents of the course is as follows:

  • Problems of MEMS: Technology trends in miniaturization, Moor's law. Examples of MEMS. Micromechanical building blocks. Scale effects.
  • Micromanufacturing processes: Tool and beam based processes, machining by impact or material addition, moulding and replication, Etching and other lithographic processes, micro-assembly, process selection.
  • Micro-fluidics: general overview, sealings and microfluidic actuators
  • Nanotechnology: general overview, CNT applications
  • Automotive MEMS: process control and packaging
  • MEMS packaging: general overview and trends in research
  • Watch making: historical overview of making small components

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

A set of slides by the teacher.

Format: more information

Course illustrated with slides and hands-on examples of MEMS components.

Micro-electromechanical Systems: Exercises (B-KUL-H04T8a)

0.3 ECTS : Field trip 5 Second termSecond term

Content

The student realizes a small micromechanical project giving insight in MEMS technology. Typical examples are a micro-ventilator or a micro-airbearing. Depending of the availability a lab visit to a major MEMS organization can be organized as an alternative.

Course material

Available on the learning platform

Format: more information

The students work (under supervision) in groups of 2 to 3 persons on a specific micromanufacturing machine tool in the lab. They realise one component of the projected device. They discuss with the other students working on other machines. Depending of the availability a lab visit to a major company or lab active in MEMS can be organized as an alternative.

Evaluatieactiviteiten

Evaluation: Micro-electromechanical Systems (B-KUL-H2X38a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Computer

Explanation

For the examination you have to discuss a scientific paper.

 

Information about retaking exams

When you retake the exam you have to use new source material so you cannot reuse the papers presented during the 2nd examination period.

ECTS Energy Challenges (B-KUL-H9X53A)

3 ECTS English 20 Second termSecond term Cannot be taken as part of an examination contract

Aims

Students should be able to grasp the context and motivations of the energy issue. The aim is for the students to be able to estimate and critically evaluate the possible ‘solutions’ in the energy-field.

Previous knowledge

Good basic knowledge in Thermodynamics (including Energy Conversion Machines and System), Electrical Energy Conversion, Physics. 

Identical courses

H00Q3A: Uitdagingen van de energieproblematiek

Is included in these courses of study

Onderwijsleeractiviteiten

Energy Challenges: Lectures (B-KUL-H05W7a)

3 ECTS : Lecture 20 Second termSecond term

Content

- The overall energy issue (extensive coverage: Security of Supply, Climate Change issue, Affordability, Energy Efficiency, Renewable sources, Fossil sources, Nuclear Energy,...)
- The energy issue for Belgium (in a European context)
 

Course material

slides

material on the Toledo website

explanations on the blackboard

Evaluatieactiviteiten

Evaluation: Energy Challenges (B-KUL-H2X53a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions, Closed questions
Learning material : Calculator

Explanation

A number of questions (with possible subquestions for each); to be solved written and closed book.

 

 

ECTS Lessen voor de 21ste eeuw (B-KUL-W0AE0A)

4 studiepunten Nederlands 26 Beide semestersBeide semesters
Pattyn Bart (coördinator) |  Pattyn Bart |  Vermeiren Florian (plaatsvervanger) |  d'Hoine Pieter

Doelstellingen

Het interfacultair college ‘Lessen voor de 21ste eeuw’ biedt een staalkaart van actuele onderzoeksthema’s in 13 lessen. Docenten uit verschillende disciplines brengen een relevant thema ter sprake dat hen nauw aan het hart ligt.  Elk jaar komen andere thema's aan bod. Dit initiatief biedt een unieke gelegenheid over de grenzen van de vakdisciplines heen te kijken en de horizon te verbreden. Het komt tegemoet aan de idee van een universiteitsbrede algemene vorming. Specifiek en bijzonder motiverend voor studenten van de KU Leuven is het feit dat deze interfacultaire lessencyclus als keuzeopleidingsonderdeel - met het daarbij horende examen - kan worden opgenomen in het studieprogramma van elke faculteit.

Deze lessenreeks richt zich verder ook tot alle leden van de universitaire gemeenschap en andere belangstellenden om aldus bij te dragen tot de realisatie van het idee van de Universitas omnium scientiarum.

Begintermen

Er is geen specifieke voorkennis vereist.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Lessen voor de 21ste eeuw (B-KUL-W0AE0a)

4 studiepunten : College 26 Beide semestersBeide semesters
Pattyn Bart |  Vermeiren Florian (plaatsvervanger) |  d'Hoine Pieter

Inhoud

Programma 2024-2025

  • 28 oktober, Bart De Strooper, Hoop aan de Alzheimer horizon
  • 4 november, Stijn Daniels, Nul verkeersdoden: utopie of realistisch doel?
  • 18 november, Raf Van Rooy, Het succes van het Leuvense Drietalencollege, het MIT van de 16de eeuw? 
  • 25 november, Brecht Van Hooreweder, 3D printen van polymeren, metalen en technische keramieken: hype of revolutie?
  • 2 december, Christian Maes, De fysica van het leven en voor het leven
  • 9 december, Tom Daems, Preventie van foltering en onmenselijke of degraderende behandeling of bestraffing
  • 16 december, Johan Swinnen, Krijgen we kanker ooit de wereld uit?
  • 10 februari, Violet Soen en Wouter Druwé, Stichtingsdocumenten en collegenotities: over wat officieel en in de praktijk werd gedoceerd aan de oude Leuvense universiteit 
  • 17 februari, Nicolas Standaert, Service learning: de samenleving als klaslokaal
  • 24 februari, Rudi Laermans, Van radicaal naar classic: Fase van Anne Teresa De Keersmaeker / Rosas meer dan veertig jaar later (i.s.m. STUK – Danserfgoed)
  • 3 maart, Pieter Dhondt, Een rijks-, katholieke of helemaal geen universiteit in Leuven? Omwentelingen in het universitaire landschap tussen 1815 en 1835
  • 10 maart, Kaat Wils en Christiaan Aart Engberts, American Dreams: contacten tussen Leuvense en Amerikaanse studenten en professoren in de 19de en vroege 20ste eeuw
  • 17 maart, Mark Derez, De splitsing van de Leuvense Universiteit
  • 24 maart, Sarah Vansteenkiste, Krapte op de arbeidsmarkt: prognoses, uitdagingen en de rol van universitaire vorming
  • 31 maart, Koen Debackere, De innovatieve rol van onze universiteit

Website: www.hiw.kuleuven.be/lessen 

 

Studiemateriaal

De teksten van de lessen worden gepubliceerd en zullen bij het einde van de reeks ter beschikking zijn: http://www.hiw.kuleuven.be/ned/lessen/

Evaluatieactiviteiten

Evaluatie: Lessen voor de 21ste eeuw (B-KUL-W2AE0a)

Type : Examen buiten de normale examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Cursusmateriaal

Toelichting

Het examen is een schriftelijk examen, type essayvragen en vindt plaats op maandag 26 mei 2025. Voor de derde examenperiode is een examen gepland op maandag 11 augustus 2025.

  • Lesgevers geven na afloop van hun les examenvragen door aan de coördinatoren van het opleidingsonderdeel.
  • Daaruit wordt telkens één vraag opgenomen in de lijst met voorbeeldvragen die via Toledo aan de studenten wordt doorgegeven.
  • Uit de overige vragen worden voor het examen drie reeksen van drie vragen opgesteld. De studenten worden in drie groepen verdeeld en krijgen op het examen elk één van de drie reeksen vragen.
  • Het examen is open boek. 
  • De studenten krijgen twee uur de tijd om het examen af te leggen.
  • De vragen worden verbeterd door de lesgevers die de desbetreffende vraag hebben ingediend.
  • De uitslagen worden samengebracht door de academisch verantwoordelijke. In geval er zich problemen voordoen (bv. onvoldoendes) contacteert hij de betrokken lesgever.
  • Op basis van de scores op de drie examenvragen stelt de academisch verantwoordelijke het definitieve examenresultaat vast.
  • De academisch verantwoordelijke bezorgt de uitslagen aan de verschillende examencommissies.