Master of Electrical Engineering (Leuven)

CQ Master of Electrical Engineering (Leuven)

Opleiding

What can you find on this webpage?

Our (future) students can find the official study programme and other useful info here.

You can find information about admission requirements, further studies and more practical info such as ECTS sheets, or a weekly timetable of the current academic year.

Are you a future student?

Be sure to first take a look at the page about the Master of Electrical Engineering.

There you can find more info on:

- What’s the programme about?

- Starting profile

- Admission and application

- Future possibilities

- Why KU Leuven

- Contact

- ...

Toelatingsvoorwaarden

Master of Electrical Engineering (Leuven)onderwijsaanbod.kuleuven.be/2024/opleidingen/e/SC_55032326.htm#activetab=voorwaarden

Doelstellingen

1.  Competent in one or more scientific disciplines
- Has an advanced knowledge and understanding of the main disciplines of electronics (circuits, signal processing and telecommunication).
- Depending on the chosen option, the student has an in-depth knowledge of one of the following areas:
  • Electronics and chip design, with emphasis on designing electronic components and systems.
  • Power systems and automation, with emphasis on generation, distribution and applications of electrical power
  • Information systems and signal processing, with emphasis on designing efficient and performant algorithms for audio, image and signal processing applications.
  • ICT security and networks, with emphasis on telecommunication and security of digital information.

- Can creatively apply, expand, deepen and integrate knowledge of different domains of electrical engineering.

2.  Competent in conducting research
- Can independently acquire the knowledge and technological status needed in the problem-solving process.
- Is able to find, process and evaluate literature and technical manuals independently.
- Is able to synthesize, establish a research plan and develop innovative solutions for a realistic problem (of a more complex nature), while considering the system boundaries.
- Can critically evaluate research results.
- Engages other disciplines in the study, where needed.

3.  Competent in designing
- Has acquired specific expertise in all stages of the problem-solving process: drafting requirements, analysis, design, implementation and testing. The graduate takes into account technological constraints and constraints inherent to the industrial environment, both in terms of hardware and software.

- Option Electronics and Integrated Circuits:
  • Can design integrated analogue, digital and high frequency circuits as well as building blocks and platforms for different applications and with the necessary knowledge of sensors, antennas and the underlying semiconductor technology.
  • Can use complex design and software tools common in the field of electrical engineering.

- Option Power Systems and Automation:
  • Can choose and tailor the right electrical platform for various applications and implement the application.
  • Can model the application in software and validate the model in lab tests

- Option Information Systems and Signal Processing:
  • Can develop and evaluate performant algorithms for audio, image and signal processing applications in the light of optimal implementation with respect to power usage, speed, required data, cost, …
  • Can choose the right electronic platform (hardware / software) for various applications and implement the application.

- Option ICT Security and Networks
  • Can choose the right electronic platform (hardware / software) for various applications, compare to existing solutions, and implement, document and evaluate the new solution.
  • Can develop and evaluate applications in telecommunication and cryptography in the light of relevant demands on the performance (power consumption, speed, cost, privacy, ...).


4.  A scientific approach
- Has a systematic approach and a critical scientific attitude.
- Can objectively consider positive and negative aspects of a solution, and select the most realistic, efficient and effective solution for a specific situation.
- Is able to independently keep up with developments in their field.

5. Basic intellectual skills
- Can form an opinion based on objective evidence.
- Is capable of abstract and structural thinking.
- Can rationally cope with incomplete or irrelevant data.
- Can independently reflect critically and constructively on their own thinking, decision making and actions.

6. Competent in co-operating and communicating
- Can report on and communicate about their own research and solutions, orally and in writing.
- Can efficiently work in groups on a project basis, carry team roles, and deal with social dynamics and deadlines.
- Is sufficiently proficient in technical English.

7. Takes account of the temporal and social context
- Is aware of the broader context (economic, legal, sociological, cultural, political, technical and industrial)
- Is aware of their social, ethical and environmental responsibility and acts accordingly.

The graduated master:

  • During the practice of the engineering profession, is guided by his or her scientific and technical knowledge.
  • Has an engineering attitude that enables him or her to formulate solutions to complex problems, taking into account relevant constraints of an economic, legal, social, ... nature.
  • Is aware of his or her social and ethical responsibility and can act accordingly.
  • Has a willingness for open communication and cooperation, both with engineers within and outside the discipline, and with other actors in the professional field.
  • Has insight into the broader role that engineers play in society.
  • Shows willingness to keep abreast of new scientific and technical evolutions, and to approach them with a critical mind.

Educational quality of the study programme

Here you can find an overview of the results of the COBRA internal quality assurance method.

Educational quality at study programme level

Blueprint
Blueprint_MA_Electrical Engineering.pdf

COBRA 2019-2023
COBRA-fiche_MA_electrical engineering_2022-2023.pdf

Educational quality at university level

  • Consult the documents on educational quality available at university level.

More information?

SC Master of Electrical Engineering (Leuven)

programma

The student chooses an option and some elective courses. The student makes choices following the rules indicated, and makes sure that his/her programme totals (at least) 120 credit points. The student's selection must always be approved by the programme director.
For students who have followed a preparatory programme, this Master programme can be adapted according to the previous knowledge of the student.
Note that overlap in contact hours between compulsory courses and elective courses, or between two elective courses cannot be excluded.

printECTS33.xsl

ECTS Religie, zingeving en levensbeschouwing (B-KUL-A04D5A)

3 studiepunten Nederlands 20 Eerste semesterEerste semester

Doelstellingen

De student is in staat om


1. te verduidelijken welke rol levensbeschouwing en religies, in het bijzonder de christelijke geloofstraditie, spelen in cultuur en samenleving;
2. te analyseren welke mens- en wereldbeelden aanwezig zijn in fenomenen in samenleving en cultuur, zoals bijvoorbeeld media, gezondheidszorg, economie, techniek, onderwijs, … en hierover kritisch te kunnen reflecteren;
3. de eigenheid van levensbeschouwing(en) en religie(s), in het bijzonder van de christelijke geloofstraditie aan te tonen en uit te leggen aan de hand van concrete voorbeelden;
4. algemene theoretische visies uit theologie en religiewetenschappen toe te passen op actuele maatschappelijke thema’s;
5. de religieuze en levensbeschouwelijke thema’s verbonden met het eigen vakgebied leren onder ogen te zien en er kritisch mee om te gaan;
6. een persoonlijke en onderbouwde visie omtrent levensbeschouwelijke vragen en fenomenen te ontwikkelen en te verwoorden, in dialoog met het christelijke geloof;
7. in verband met aspecten van het eigen leven de waarde van religie, zingeving en geloofshoudingen te benoemen (‘levensbeschouwelijke bedachtzaamheid’);
8. levensbeschouwelijke  dimensies in het ontwikkelen van de eigen professionele identiteit te integreren. (zie https://www.kuleuven.be/onderwijs/visie-en-beleid/beleidsplan/Visie).

Begintermen

Dit college vergt geen specifieke voorkennis. Algemene kennis van de hoofdlijnen van de filosofie, de ethiek en de westerse cultuur en geschiedenis behoren wel tot de veronderstelde achtergrond van de cursus. Wat de motivatie betreft, wordt van de studenten niet verwacht dat zij gelovig zijn, wel dat zij bereid zijn op een open en kritisch-wetenschappelijke wijze te reflecteren over fundamentele ethische en zingevingsvragen vanuit verschillende levensbeschouwelijke invalshoeken, in het bijzonder, maar niet exclusief, de joodse en de christelijke invalshoek.

Identieke opleidingsonderdelen

A08C4A: Religie, zingeving en levensbeschouwing
H0N82A: Religions

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Religie, zingeving en levensbeschouwing (B-KUL-A04D5a)

3 studiepunten : College 20 Eerste semesterEerste semester

Inhoud

Vanuit moderne menswetenschappelijke inzichten en vanuit het eigentijdse theologische denken worden enkele thema's uit de actuele zingevingsproblematiek behandeld. De volgende vragen komen aan bod: waartoe dienen godsdiensten, wat vormt de kern van het christelijk geloof en hoe kan men dit situeren in het kader van de andere wereldreligies? Uitvoerig wordt ingegaan op de relatie enerzijds tussen christendom en cultuur, anderzijds tussen geloof en wetenschap en op enkele klassieke thema's die door de eeuwen heen de scharnierpunten van het christelijk geloof hebben gevormd: de bijdrage van het geloof tot het persoonlijk geluk, de christelijke toekomstverwachting, het debat over geloof en wetenschap en de vraag naar de specificiteit van de ethische inzet (normvervaging/normverschuiving). Ten slotte wordt aandacht besteed aan de relevantie van een levensbeschouwing m.b.t. tot ingenieursethiek.

Studiemateriaal

Studiekost: 11-25 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Het handboek is verkrijgbaar bij Acco (Hans Geybels & Ellen Van Stichel, Weerbarstig geloof (Leuven: Acco, 2018).

Toelichting werkvorm

Interactief college.

Evaluatieactiviteiten

Evaluatie: Religie, zingeving en levensbeschouwing (B-KUL-A24D5a)

Type : Examen tijdens de examenperiode
Vraagvormen : Meerkeuzevragen
Leermateriaal : Geen

Toelichting

Het examen is multiple choice en bevat voor 20 procent kennisvragen en voor 80 procent denkvragen. Er is geen GIScorrectie.

Toelichting bij herkansen

Inhaalexamens en herexamens bestaan uit drie open vragen.

ECTS Recht van de intellectuele eigendom (B-KUL-C00M0A)

3 studiepunten Nederlands 20 Tweede semesterTweede semester

Doelstellingen

Bij het voltooien van dit opleidingsonderdeel is de student, ongeacht zijn specialisatie, in staat om:
• inzicht te hebben in de basisregels van het algemene rechtssysteem en de bronnen van het Belgisch en Europees recht die daar aan de basis van liggen
• de juridische beginselen te herkennen en begrijpen die spelen op de markt van de vrije mededinging (regels marktpraktijken
• te kunnen uitleggen waarom en hoe de regels inzake intellectuele rechten een belangrijke rol spelen voor de bescherming van kennis en creativiteit als belangrijke pijlers van de economieën in de 21ste eeuw
• de basisregels inzake de hoofddomeinen van de intellectuele rechten (auteursrecht, merkenrecht en octrooirecht) te begrijpen, te kennen en toe te passen
• gebruik te maken van de juridische terminologie eigen aan het domein van de intellectuele rechten
• tijdens zijn/haar latere beroepsloopbaan een eerste analyse te maken en een oplossing te formuleren over de toepassing van de verschillende deel-regels van de intellectuele rechten met betrekking tot nieuwe creaties en vindingen

Begintermen

   Geen voorkennis vereist

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Recht van de intellectuele eigendom (B-KUL-C00M0a)

3 studiepunten : College 20 Tweede semesterTweede semester

Inhoud

In een inleidend deel wordt toegelicht hoe ons rechtssysteem werkt en wat de bronnen zijn van het Belgisch en Europees recht als achtergrond om de volgende delen te duiden.

Een tweede deel handelt over de regeling van de (eerlijke) marktpraktijken binnen het algemene kader van de vrije concurrentie. Welke praktijken zijn verboden? Aan welke regels moet men zich houden bij cont(r)acten met consumenten en concurrenten?

Een derde deel zoemt in op het systeem van de intellectuele rechten dat belangrijke uitzonderingen inhoudt op de regel van de vrije concurrentie. Achtereenvolgens worden de basisregels van het auteursrecht, het merkenrecht en het octrooirecht uitgelegd waarbij de theoretische regels worden toegelicht aan de hand van concrete casussen die zich in de praktijk van een ingenieur kunnen voordoen. Deze casussen omvatten ook voorbeelden die als examenvragen kunnen worden gesteld. In het onderdeel octrooirecht wordt eveneens een praktische module ingebouwd die de student in staat moet stellen om zelfstandig octrooibronnen te raadplegen.

In een laatste deel wordt aandacht besteed aan andere juridische concepten waarmee ingenieurs kunnen worden geconfronteerd zoals de bescherming van ‘know-how’ (fabrieksgeheimen) en de problematiek van vindingen en creaties door werknemers.

Voor een gedetailleerde inhoudstafel, zie Toelichting Werkvorm

Studiemateriaal

Studiekost: 1-10 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Handouts van de presentaties die tijdens de hoorcolleges worden gebruikt worden voorafgaand aan het betrokken college op Toledo geplaatst.
Tekstmateriaal - een bundel wordt samengesteld over de verschillende onderdelen (beschikbaar via VTK bij de aanvang van het 2de semester)

Toelichting werkvorm

Er wordt voor klassiek collegeonderwijs gekozen omdat de studenten nauwelijks of geen basiskennis hebben van de toepasselijke rechtssystemen en rechtsregels in dit vakgebied.
De hoorcolleges hebben als hoofddoelstelling om deze regels aan de hand van voorbeelden uit de praktijk toe te lichten en beogen een aanvulling, zowel als een verduidelijking van het schriftelijk cursusmateriaal te bieden.
Ter illustratie van de juridische beginselen worden tijdens de colleges regelmatig ‘praktijkgevallen' (casussen) voorgelegd aan de studenten met de bedoeling interactiviteit tussen docent en studenten te stimuleren en hen voor te bereiden op het examen. Er wordt in elk college ook gebruik gemaakt van PollEverywhere voor het inoefenen van de materie.

De colleges volgen de structuur van schriftelijk studiemateriaal dat volgende inhoudstafel heeft:

Deel I : Inleiding tot het Recht
1. Wat is “Recht”
2. Objectief en subjectief recht
3. De Bronnen van het Recht (overzicht)
4. De wet als primaire rechtsbron
5. De rechterlijke macht in België
6.  Het subjectief recht

Deel II Regeling marktpraktijken
1. Basisbeginsel : de vrijheid van beroep en bedrijf impliceert de vrijheid van mededinging
2. Belangrijke regels uit de Wet Marktpraktijken (WMPC)

Deel III Intellectueel Eigendomsrecht
1. Inleiding
2. Overzicht van de sector van de intellectuele rechten
3. Hoofdlijnen van het auteursrecht
4. Een auteursrecht ‘op maat’ voor computerprogramma’s
5. Hoofdlijnen van het merkenrecht -
6. Hoofdlijnen van het octrooirecht
7. Horizontaal vraagstuk : vindingen en creaties door werknemers

Deel IV Bescherming van know-how
1. Begripsomschrijving
2. Feitelijke vermogenswaarde
3. Juridische bescherming
4. Organiseer zelf een optimale bescherming

Evaluatieactiviteiten

Evaluatie: Recht van de intellectuele eigendom (B-KUL-C20M0a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Geen

Toelichting

Het examen duurt twee uur en bestaat uit 3 onderdelen met gelijke weging van de punten. 

Het examen bestaat uit
- twee open essayvragen : de studenten moeten in staat zijn om een gestructureerd, begrijpelijk en inhoudelijk correct advies af te leveren over een concreet probleem of vraagstelling m.b.t. (bepaalde) intellectuele rechten
- een open theoretische vraag : de studenten moeten in staat zijn om op een gestructureerde, begrijpelijke en inhoudelijke correcte toelichting te geven bij de fundamentele beginselen, - concepten en –regels die van toepassing zijn in de sector van de intellectuele rechten.

Het eindresultaat kan met één punt verminderd worden indien niet werd voldaan aan een schriftelijke opdracht die voor de module octrooirecht moet worden ingeleverd voorafgaand aan het college.

Toelichting bij herkansen

Er is een tweede examenkans in de derde zittijd. De examenvorm en vraagvorm blijven voor beide examenkansen gelijk.

ECTS ICT-recht (B-KUL-C07I6A)

4 studiepunten Nederlands 26 Tweede semesterTweede semester
De Bruyne Jan (coördinator) |  De Bruyne Jan |  Royer Sofie

Doelstellingen

Leerdoelen

In dit opleidingsonderdeel leren studenten uit verschillende niet-juridische universitaire opleidingen juridische problemen rond het gebruik van digitale informatie- en communicatietechnologieën (ICT) herkennen en analyseren. Tevens leren zij zowel de begrenzingen alsook de kansen herkennen die het recht voor de ontwikkeling en het gebruik van ICT behelst. Vermits het recht vaak geen gelijke tred kan houden met de technologische ontwikkelingen - en dit vanuit sommige perspectieven ook minder gewenst kan zijn - wordt tevens uitvoerig stil gestaan bij de wisselwerking tussen technologieontwikkeling en haar maatschappelijke context en bij alternatieve vormen van regulering.

Begintermen

Bachelor opleiding in een niet-juridische studierichting. Er is geen technische of juridische voorkennis vereist.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

ICT-recht (B-KUL-C07I6a)

4 studiepunten : College 26 Tweede semesterTweede semester

Inhoud

In dit vak worden juridische aspecten van ICT behandeld vanuit het perspectief van het Belgisch recht, met ruime aandacht voor de Europese context. Daarnaast wordt stilgestaan bij de wederzijdse beïnvloeding van technologieontwikkeling en maatschappij en bij andere modaliteiten van regulering (economie, moraal en technologie zelf). Voor iedere module worden een aantal technische basisbegrippen nader toegelicht.

Het opleidingsonderdeel bestaat uit volgende leermodules:

1) introductie tot ICT-recht: historische achtergrond, globaal overzicht, afbakening als rechtsgebied, recente evoluties en toekomstige uitdagingen in
     ICT-recht;

2) metajuridische reflectie over alternatieve vormen van regulering: moraal, markt en technologie.

3) intellectuele rechten in de context van informatie- en communicatietechnologie (auteursrecht en Internet, bescherming van software, databanken,
    chips, domeinnamen);

4) bescherming van de persoonlijke levenssfeer (verwerking van persoonsgegevens, privacybescherming bij elektronische communicatie);

5) toepassingen van verbintenissen en handels- en economisch recht i.v.m. ICT (ICT-contracten, elektronische contracten, elektronische contracten,
    elektronische handtekening, mededingingsrecht, elektronische handel, aansprakelijkheid van tussenpersonen);

6) informaticamisdrijven, strafprocedure en ICT, juridische aspecten van informatieveiligheid;

7) juridische vraagstukken betreffende elektronische communicatie en media-innovatie.

Het vak is sterk praktijkgeoriënteerd en wil de student in staat stellen juridische vraagstukken in verband met ICT op te lossen in de Belgische context. Daarnaast beoogt het tevens de student op een meer theoretisch niveau bewust te maken van het toenemend belang van de rol van ICT in de samenleving en van de (on-)mogelijkheden en (on-)wenselijkheden met betrekking tot de regulering van ICT door middel van het recht.

Studiemateriaal

Handboek en Toledo

Toelichting werkvorm

De onderwijsmethoden voor dit vak bestaan uit hoorcolleges, interactieve groepsdiscussies en oefeningensessies. Van de studenten wordt in beperkte mate zelfstudie verwacht ter voorbereiding van een aangekondigde groepsdiscussie of oefeningensessie.

Voor elke leermodule kan de student vooraf zelf het aangeboden leermateriaal (boek en materiaal via Toledo) verwerken en – bij sommige modules – oefeningen oplossen. Bij enkele modules wordt extra, vrijwillig, leermateriaal aangereikt dat de student een breder beeld of dieper inzicht kan verschaffen van specifieke deelonderwerpen waarop in de cursus om praktische of didactische redenen niet zo diep kan worden ingegaan.

Voor de communicatie tussen studenten en docenten wordt in eerste instantie Toledo gebruikt. De college-uren zijn vooral bedoeld voor verheldering en verklaring van de grote thematische lijnen en het oplossen van oefeningen en vraag- en antwoordsessies.

Evaluatieactiviteiten

Evaluatie: ICT-recht (B-KUL-C27I6a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen
Leermateriaal : Wetboek/codex

Toelichting

Het examen verloopt schriftelijk en gesloten boek. Wel mogen de studenten wetboeken meenemen en raadplegen. Elektronische hulpmiddelen zijn niet toegestaan. Via open vragen wordt gepeild naar theoretische kennis van besproken juridische en meta-juridische concepten en rechtsregels, alsook naar inzicht in de toepassing van die concepten en regels via praktische gevalstudies. Bij die laatste wordt van de student verwacht dat hij/zij een opgegeven casus kan analyseren vanuit juridisch oogpunt (wat zijn de juridisch relevante kwesties in deze situatie?) en oplossen (d.i. een juridisch onderbouwde redenering kan opstellen met de kennis opgedaan tijdens het opleidingsonderdeel).

ECTS Innovation Management and Strategy (B-KUL-D0H36A)

6 ECTS English 39 First termFirst term Cannot be taken as part of an examination contract

Aims

Upon completion of this course, the student is able to:

• Define, clarify and understand major concepts and topics which constitute the specific nature of innovation dynamics/innovation systems.
• Define and clarify concepts  and models (rationale, ingredients, implications) relevant for defining  and implementing an innovation strategy (on the level of the firm)
• Define and clarify concepts and models (rationale, ingredients, implications) relevant for organising new product development efforts (project level)

Previous knowledge

No specific prerequisites.

Is included in these courses of study

Onderwijsleeractiviteiten

Innovation Management and Strategy (B-KUL-D0H36a)

6 ECTS : Lecture 39 First termFirst term

Content

Part 1: Technology and innovation dynamics/systems: Key concepts and Insights
Part 2: Defining and implementing an innovation strategy (at the level of the firm)
Part 3: Management of New Product Development processes (Project level)

Each part provides the students with a grounded and scientific approach towards important aspects of the innovation process. As a consequence, major scientific as well as application-oriented articles are provided as reading materials for each module.

The first part highlights the disciplinary roots or origins of the innovation process. More specifically, we highlight economic studies of the innovation process. These studies delve deeper into the work and insights of Joseph Schumpeter on the role of entrepreneurs and established companies and market pull and technology push dynamics. In addition we will elaborate insights on the level of innovation systems including the relevancy of (support) policies (e.g. patent systems) as well as the role of research centers and universities within such systems.

The second part develops models of the innovation process and examines the strategic management of technology and innovation on the level of the firm. Both defining an innovation strategy and implementing the innovation strategy by means of concepts and practices such as the development of technology portfolios (including selection criteria for innovation projects and programs) and technology roadmaps will be discussed. Major issues in organising the effective implementation of innovation strategies will be introduced (e.g. Organisational Ambidexterity, Venturing,.. .). We will also look at the nature and relevance of alliances and cooperation for the innovative performance of the firm.

The third part discusses the management of day-to-day operations in innovation environments. We discuss the following themes: (1) organising innovation activities and new product development projects, (2) critical success factors in managing innovation projects, (3) the concept of project performance in innovative settings, (4) techniques and approaches to support project management in innovative environments, and (5) the management of innovative teams and professionals.

Course material

Used Course Material
Handbook: Innovation Management and Strategy, Van Looy. McGraw Hill, 2016. (ISBN: 9781308882987)
Articles and literature
Slides, transparencies, courseware

Toledo
* Toledo is used for this learning activity to share readings, lecture slides, etc.

Format: more information

Students acquire in-depth insights in the management of innovation and technology in a course that combines traditional lectures and a group assignment.

For the group assignment students write a paper and give a poster presentation. Students demonstrate their ability to analyse and understand innovation dynamics. Given the scope of the course, topics can be situated at 3 different levels: innovation systems and policies, innovation strategies of firms and innovative products/projects (including business models).

Evaluatieactiviteiten

Evaluation: Innovation Management and Strategy (B-KUL-D2H36a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project, Presentation
Type of questions : Open questions
Learning material : None

Explanation

Features of the evaluation

* The written closed book exam assesses the extent to which the student has internalised the insights from the readings and lectures and is able to diagnose innovation dynamics, develop relevant arguments and understands consequences and implications of proposed actions.

* The paper and presentation should reflect that the student is able to analyse and understand the specific nature of their topic, to compare/situate the topic within the relevant (scientific) literature and to arrive at an assessment in terms of appropriateness. This is a group assignment.

* The paper and presentation are group assignments in teams of 4-6 people.

* For the paper the term of deliverance and deadline will be determined by the lecturer and communicated via Toledo. The deadline will be situated before the start of the examination period at the end of the semester.

* The final presentation date will be set by the lecturer and communicated via Toledo. The presentations will take place before the start of the examination period; at the end of the semester.

Determination of final grades

* The grades are determined by the lecturer as communicated via Toledo and stated in the examination schedule. The result is calculated and communicated as a number on a scale of 20.

* The final grade is a weighted score and consists of the following components: 60% on a written closed book exam; 40% on the written paper and presentation

* The grade for the paper is only taken into account if the student succeeds in the final exam.

* If the student does not participate in the written exam, the final grade of the course will be NA (not taken) for the whole course.

* If the set deadline for the paper was not respected, the grade for that respective part will be a 0-grade, unless agreed otherwise by the lecturer. Changes in deadlines can only be considered in case of unexpected, severe, circumstances.

* If the student did not participate in the elaboration of the paper, the grades for the paper and presentation will be a 0-grade.

Second examination opportunity

* The features of the evaluation and determination of grades are similar to those of the first examination opportunity, as described above.

* The student retakes that part of the evaluation (written closed book exam and/or paper and  presentation) for which he did not pass. The grade obtained at the first exam opportunity for the part the student did pass, will be transferred to the second exam opportunity.

* If students did not pass for the paper and presentation (and did not pass overall), a tailor made trajectory (individual) for the paper can be considered/allowed.

ECTS ICT Service Management (B-KUL-D0I69A)

6 ECTS English 39 Second termSecond term

Aims

Upon completion of this course, the student has a fundamental understanding of the management of ICT-based Services. The student is confronted with the underlying theory and best practices, extensively illustrated by means of case studies. In particular the student is able to:

  • define precisely ICT-based Services from a demand as well as support perspective, and understand the positioning of Services in Business Processes
  • define and implement an overal ICT-based Service Catalogue for an organisation
  • apply relevant costing policies to ICT-based Services
  • make the business case for the development of new and innovative services (including cost-benefit analysis)
  • decide on (out)sourcing issues in ICT-based Services
  • evaluate the applicability of Service Management Frameworks (ITIL, ISO20000, CMMI and COBIT) for Service Delivery as well as Support

Previous knowledge

At the beginning of this course, the student should possess a basis knowledge of Information Systems.
Furthermore, knowledge of basic micro-economical techniques is recommended.

Is included in these courses of study

Onderwijsleeractiviteiten

ICT Service Management (B-KUL-D0I69a)

6 ECTS : Lecture 39 Second termSecond term

Content

The topics of this course are:

Part I: IT Service management

* Introduction: IT in a business environment
* A framework for IT management
* IT managment standards and frameworks
* Services delivery management
* Financial managemement
* Operations management
* Services quality management
* Security management
* Supplier management
* Human resources management

Part II: IT governance

* Introduction: what is IT governance?
* The ISO 38500 standard
* The COBIT framework
* IT decision making
* IT spending
* Business-IT alignment

Course material

Mandatory course material: course book: The IT Management Essentials - Delivering business value, ISBN: 9789057187513

Toledo: in depth explanations and comments of parts of the course book, literature, slides.

Language of instruction: more information

De deelnemersgroep is sterk internationaal samengesteld

Format: more information

The course consists of:

1. Lectures where the topics are presented, elaborated and discussed.
2. Exercises where the topics are applied to specific situations. Exercises are prepared by the students and discussed during class.
3. Self-study, in particular the reading of research papers.

Evaluatieactiviteiten

Evaluation: ICT Service Management (B-KUL-D2I69a)

Type : Partial or continuous assessment with (final) exam during the examination period
Type of questions : Open questions
Learning material : Calculator

Explanation

The exam is oriented towards understanding and applying IT governance and management research, standards, frameworks, principles, processes and techniques.
The grades are determined by the lecturer as communicated via Toledo and stated in the examination schedule. The result is calculated and communicated as a whole number on a scale of 20.
The features of the evaluation and determination of grades are identical to those of the first examination opportunity, as described above.

ECTS Technology Entrepreneurship and New Business Development (B-KUL-D0S18A)

6 ECTS English 54 Both termsBoth terms Cannot be taken as part of an examination contract

Aims

This course offers a bird's-eye view of the entrepreneurial process, exploring how technological opportunities are transformed into value-creating economic activities. It aims to enhance understanding of the how, where, when, who, and why behind entrepreneurial initiatives.

Upon completion of this course, the student is able to:

  • Explain and illustrate the unique qualities of the entrepreneurial process;
  • Understand the role that business planning may have on the entrepreneurial process;
  • Understand the significance and dangers of business plan writing;
  • Appreciate the different purposes and audiences for business plans;
  • Evaluate the attractiveness of product and service ideas;
  • Evaluate the feasibility of business models within high-tech industries;
  • Retrieve (sufficiently reliable) primary data as input to a business planning process;
  • Apprehend the essential components of effective business plans;
  • Develop and evaluate a sophisticated business plan for an identified or given opportunity situated within a high-tech industry;
  • Adequately present a business idea.

 

 

Previous knowledge

This course does not assume that you have taken prior classes on entrepreneurship or business administration. However, it would help if you have a rudimentary understanding of how organizations operate. Actually, students who have already taken management or business courses may come to realize that the entrepreneurial building of new business is quite distinct from more generic business management.

Is included in these courses of study

Onderwijsleeractiviteiten

Entrepreneurship: Models and Ingredients (B-KUL-D0O39a)

2 ECTS : Lecture 36 Both termsBoth terms

Content

This component is designed to immerse students in the theory of entrepreneurship and new venture creation and address the trepidations of students who may consider becoming entrepreneurs at some point in their career.

Topics Covered in this Course:

  • Entrepreneurship intro, idea generation;
  • Feasibility study, business plan guidelines;
  • Industry analysis, market analysis;
  • Industry segmentation, target market selection;
  • Marketing plan, business positioning;
  • Team development;
  • Operations, product development plan;
  • Getting funding, financial statements.

Course material

Used Course Material:

  • Barringer, B.R. & Ireland, R.D. (2012). Entrepreneurship: Successfully launching new ventures (4th edition). Harlow: Pearson Education Limited;
  • Barringer, B.R. (2008). Preparing effective business plans: An entrepreneurial approach. Upper Saddle River (NJ): Prentice Hall;
  • Jones-Evans, D. & Carter, S. (2012). Enterprise and small business: Principles, practice and policy (3rd edition). Harlow: Pearson Education Limited.

Recommended Reading:

Toledo:

  • Toledo is being used to share all necessary readings and lecture slides.

Language of instruction: more information

This course is taught in English. 

Format: more information

Students interactively acquire in-depth and advanced insights into the entrepreneurial process in a course that combines traditional lectures (Models and Ingredients) with a demanding field project (Development of a Business Plan).

Is also included in other courses

D0O37A : Entrepreneurship and New Business Development

Entrepreneurship: Development of a Business Plan for High Tech Industries (B-KUL-D0S18a)

4 ECTS : Assignment 18 Both termsBoth terms

Content

For this component, students participate in a group-based business plan writing exercise, accompanied by presentations on their group's progress.

Topics Covered in this Course:

  • Idea generation and feasibility study;
  • Industry analysis, market analysis;
  • Industry segmentation, target market selection;
  • Marketing plan, business positioning;
  • Team development;
  • Operations, product development plan;
  • Getting funding, financial statements.

 

Course material

Used Course Material:

  • Barringer, B.R. & Ireland, R.D. (2012). Entrepreneurship: Successfully launching new ventures (4th edition). Harlow: Pearson Education Limited;
  • Barringer, B.R. (2008). Preparing effective business plans: An entrepreneurial approach. Upper Saddle River (NJ): Prentice Hall;
  • Jones-Evans, D. & Carter, S. (2012). Enterprise and small business: Principles, practice and policy (3rd edition). Harlow: Pearson Education Limited.

Toledo:

  • Toledo is being used to share all necessary readings, lecture slides, presentation guidelines, submit work, etc.

Language of instruction: more information

This course is taught in English. All presentations are delivered in English. 

Format: more information

Presentation - Project work

This course provides you with a profound understanding of the role, analytics, and process of business plan writing. Following the lectures ("Models and Ingredients"), students will engage in a group-based business-planning project and accompanying presentations. You will learn how to rigorously prepare for starting up a new business. As part of a small (approximately 6 students) and diverse team, you will develop an operational business plan aimed at either the creation of a new venture (NVC-track) or the development of new business for an established small to medium-sized firm (NBD-track). In both tracks, projects should pertain to a technology-intensive industry. You will engage in all steps of the entrepreneurial decision-making process (e.g., idea generation, feasibility analysis, industry study, market analysis, marketing plan, production plan, product development, and financial statements). Participants are expected to accumulate entrepreneurial knowledge and behaviors that support creative solutions and new value development.

The business plan is the most demanding course component. It is in the business plan that you can show what you have learned from the course. It requires extensive field research, creativity, and critical thinking.

Evaluatieactiviteiten

Evaluation: Technology Entrepreneurship and New Business Development (B-KUL-D2S18a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Paper/Project, Presentation, Self assessment/Peer assessment
Type of questions : Multiple choice
Learning material : None

Explanation

Features of the Evaluation:

  • A written exam assesses the extent to which the student has internalized the key insights from the course material that were studied to prepare for the lectures and that will be applied in the business plan. Questions will be in the format of single-answer, multiple-choice, with correction for guessing. Further details about the grading of the multiple-choice questions will be explained during the lectures and can be found on the Toledo page;
  • The course involves the full development of an operational business plan as well as multiple intermediate presentations throughout the year;
  • The business plan and presentations should reflect that you can adequately apply the different entrepreneurial concepts presented in class;
  • Upon completion of the business plan, students have to indicate the extent to which their team members (peers) have contributed to the final result of the manuscript and its presentations (= peer assessment);
  • For the business plan exercise, the terms of delivery and deadlines will be determined by the lecturer (titularis) and communicated via the Toledo page;
  • The date of the (final) business plan presentation(s) will be determined by the lecturer (titularis) and communicated via the Toledo page. The presentations will take place before the examination period.

Determination of the Final Grades:

  • The grades are determined by the lecturer (titularis) as communicated via the Toledo page and stated in the examination schedule. The final grade is calculated and communicated as an integer on a scale of 20;
  • The final grade is a weighted score and consists of the following components:
    • 30% on a written closed-book exam in the form of multiple-choice questions, organized in the January examination period (with correction for guessing);
    • 50% on the final business plan;
    • 20% on the business plan presentations.
  • Peer evaluation may trigger a correction up to 20% of the grade of the business plan;
  • If the set deadlines for the business plan exercise were not respected, the final grade will be “NA” (not taken) for the whole course;
  • If the student does not participate in the development of the business plan, the final grade will be “NA” (not taken) for the whole course;
  • If the student does not participate in the exam, the final grade will be “NA” (not taken) for the whole course;
  • Student attendance and participation in the business plan presentations are required for successful completion of the whole course.

Second Examination Opportunity:

  • At the second exam opportunity, the final grade is based on:
    • 30% on a written closed-book exam in the form of multiple-choice questions (with correction for guessing);
    • 50% on an individual assignment (for students who failed the business plan component);
    • 20% on the business plan presentations.
  • Students who passed the exam do not have to retake the exam. The grade obtained at the first exam opportunity will therefore be transferred to the second exam opportunity;
  • Students who have passed the business plan cannot retake that component. For them, the results already obtained at the first exam opportunity will be transferred to the second exam opportunity;
  • Students who failed the business plan, cannot retake the business plan exercise but are required to complete an individual, written assignment;
  • Due to the nature of the business plan presentations, this part of the evaluation cannot be retaken. The grade obtained at the first exam opportunity for this part will therefore be transferred to the second exam opportunity.

Information about retaking exams

See ‘Explanation’ for further information regarding the second examination opportunity.

ECTS Intellectual Property Management (B-KUL-G0B01A)

4 studiepunten Nederlands 26 Tweede semesterTweede semester

Doelstellingen

Bij het voltooien van dit opleidingsonderdeel is de student, ongeacht zijn specialisatie, in staat om:
• het belang van kennis- en technologiebescherming begrijpen voor bedrijven en onderzoeksinstellingen
• de basisregels van het intellectuele eigendomsrecht in het algemeen en het octrooirecht, het auteursrecht, het merkenrecht en het modellenrecht in het bijzonder te begrijpen
• inzicht te hebben in de wijze waarop bedrijven in de praktijk, bij het uittekenen van hun beleid inzake bescherming van nieuwe innovaties en creaties, gebruik maken van het systeem van de intellectuele rechten
• gebruik te maken van terminologieën die eigen zijn aan het domein van de intellectuele rechten en het management daarvan
• te begrijpen wat de voor- en nadelen zijn van het beschermen of geheimhouden van nieuwe kennis of technologieën en welke strategieën daarbij kunnen worden gehanteerd
• in staat zijn om – op basis van vooraf gegeven opgaven – een antwoord te formuleren op vragen die verband houden met de bescherming van intellectuele rechten en het management van deze rechten in de praktijk
• tijdens zijn/haar latere beroepsloopbaan een eerste analyse te maken van, en een voorstel te formuleren over, de beschermingsmogelijkheden van nieuwe creaties en vindingen en het verdere beheer ervan

Begintermen

Het college gaat ervan uit dat de studenten geen voorkennis inzake recht in het algemeen of intellectuele rechten in het bijzonder bezitten.  

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Intellectual Property Management (B-KUL-G0B01a)

4 studiepunten : College 26 Tweede semesterTweede semester

Inhoud

De colleges zijn opgedeeld in enkele theoretische modules en een groot aantal gastcolleges.

Tijdens de theoretische modules worden aan de student de basisregels van de hoofddomeinen van de intellectuele rechten (octrooirecht, auteursrecht en merkenrecht) uitgelegd. Dit gebeurt in een voor een niet-jurist begrijpbare taal (zonder verwijzing naar wetteksten) met uitvoerige verwijzingen naar voorbeelden uit de praktijk. Er wordt verder ook ingezoemd op het belang en de betekenis van intellectuele rechten vanuit een breder economisch perspectief.

Alle andere colleges worden ingevuld door gastsprekers uit het bedrijfsleven of het ruimere praktijkveld. Deze sprekers lichten de beschermingsstrategieën toe die hun bedrijven (uit diverse sectoren) tijdens de opeenvolgende stadia van het onderzoek naar, en de ontwikkeling van, nieuwe creaties en producten hanteren. De klemtoon van deze colleges ligt op het ‘management’ van intellectuele rechten in de praktijk. De bedoeling is om de studenten te leren begrijpen waarom en hoe ze in hun latere professionele leven aandacht moeten schenken aan de bescherming van creaties en innovaties door intellectuele rechten.
Voor een overzicht van de verschillende aspecten die aan bod komen, verwijzen we naar de rubriek ‘Toelichting Werkvorm’ met de kalender van de modules en sprekers zoals die tijdens een vorig academiejaar aan bod kwamen.

Studiemateriaal

Studiekost: 11-25 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

- Syllabus M-C Janssens, ‘Basisbeginselen Intellectuele Rechten’, verkrijgbaar bij Acco (elk jaar hernieuwde versie)
- Handouts van de presentaties die tijdens de hoorcolleges worden gebruikt (via Toledo)
- Bundel van voorbeeldvragen op basis waarvan de leerstof kan worden bestudeerd

Toelichting werkvorm

Overzicht van topics die jaarlijks aan bod komen (onder voorbehoud van kleine aanpassingen)

College 1
Inleiding tot het systeem van de intellectuele rechten & Basisbeginselen inzake octrooirecht en concrete betekenis voor werknemers en onderzoekers.
Wat zijn de vereisten voor een octrooi?  Hoe een octrooi aanvragen?  Wat zijn mijn rechten als werknemer, onderzoeker, student?

Prof. Marie-Christine Janssens

College 2
Basisbeginselen inzake auteursrecht en het belang van auteursrecht voor niet-culturele (industriële) creaties: Welke creaties worden beschermd? Hoe verwerft men auteursrecht? Aan wie komt het recht toe en wat is de beschermingsomvang? Welke handelingen kan een gebruiker stellen zonder inbreuk te plegen? s

Prof. Marie-Christine Janssens

College 3
‘Research & Development’ in de biomedische industrie.
Hoe verloopt het onderzoek?  Overzicht van bijzondere aandachtspunten bij beleidsbeslissingen inzake een IE (intellectuele eigendom) beleid.  Getuigenissen aan de hand van ervaringen bij de ontwikkeling van een geneesmiddel.

X., Janssen Pharmaceutica (Johnson & Johnson Patent Law department)

College 4
‘Research & Development’ in de elektronische industrie.
Voor- en nadelen van een samenwerking met andere bedrijven bij de ontwikkeling van een nieuw product. Welke modellen van samenwerking bestaan en welke beleidsbeslissingen komen kijken bij dergelijke samenwerkingen?  Wat is Open Innovation? Getuigenissen aan de hand van ervaringen bij Philips (MiPlaza, Holst Centre, Senseo-story).

X. Philips Intellectual Property & Standards, Eindhoven

College 5
Het belang van Intellectuele Rechten in een ruimer economisch kader: de betekenis van IR in het macro- en micro economisch denken rond innovatie en concurrentie. Hoe kunnen individuele ondernemingen strategisch omgaan met hun intellectuele eigendom?
In een laatste deel wordt ingezoomd op de basisbouwstenen van een licentieovereenkomst.

Prof. Koenraad Debackere


College 6
Octrooirecht - Beleidsmatige vragen
Waarom wel of waarom niet octrooien aanvragen? Welke beleidsopties staan open? Welke licentiepolitiek kan worden gevoerd? Wat betekent ‘waarde-extractie’ uit octrooien?  Met welke problemen kan men geconfronteerd worden? Hoe omgaan met standaarden? Belang van het afsluiten van goede akkoorden als NDA en JDA.

X., Philips Intellectual Property & Standards, Eindhoven

College 7
Het opstarten van een spin-off als mogelijk alternatief voor de valorisatie van creaties en vindingen. Waarom daartoe beslissen? Wat zijn de voorwaarden, aandachtspunten en mogelijke valkuilen? Het college geeft een antwoord op deze vragen en bespreekt de opeenvolgende fasen tussen het bekomen van de onderzoeksresultaten en de ‘closing of the deal’.

Dr. Ir. Rudi Cuyvers, Innovation Manager KU Leuven Research & Development

College 8
Belang van octrooien als bron van informatie voor bedrijven en onderzoekers.
Welke informatie kan iedereen concreet halen uit de verschillende onderdelen van een octrooidocument? Waar vind ik deze informatie (toelichting en demonstratie via Espac@net). In deze module wordt ook een grondige analyse van de inhoud van een octrooidocument gemaakt. Tot slot wordt het belang van deze informatie voor ‘Intelligence & IP landscaping’ aangeduid.

X., Janssen Pharmaceutica (Johnson & Johnson Patent Law department)

College 9
Bescherming voor computerprogramma’s: auteursrechtelijke en/of octrooirechtelijke bescherming. De betekenis en het belang van ‘open source’.

X., IP Counsel, Philips Intellectual Property & Standards, Eindhoven

College 10
Basisbeginselen van het merkenrecht (deel I).  Belang en functie van merken. Wat zijn de vereisten voor een merk?  Hoe bescherming verkrijgen als Benelux, gemeenschaps- of internationaal merk?

Prof. Marie-Christine Janssens

College 11
Merkenrecht bekeken vanuit de praktijk. Hoe gaan bedrijven om met hun merken en welke beleidspolitiek zit daar achter? Hoe wordt een nieuw merk gecreëerd en gelanceerd? Welke strategie wordt gevolgd voor merkbewaking? Deze vragen worden beantwoord aan de hand van getuigenissen vanuit twee verschillende sectoren.

X., verantwoordelijke merkenbeleid OmegaPharma/PerigoCollege 13

College 12
Beschermingsmogelijkheden voor biotechnologische vindingen (enzymen, planten, dieren, mensen, …). Kan je leven octrooieren? Juridische en ethische kwesties.

X., Johnson&Johnson Patent Law Dept.

College 13

Deel 1: Het beschermingssysteem van Tekeningen- en modellen: en niet te verwaarlozen aandachtspunt voor bedrijven. Overzicht van de beschermingsvereisten en wijze van deponeren.

X., Europees en Benelux Merken- en modellenbureau Gevers, Gent.

Deel 2: Het systeem van domeinnamen: geen intellectueel recht maar wel een economisch belangrijke ‘asset’ voor bedrijven. Overzicht van de werking van het systeem. Hoe kunnen conflicten tussen domeinnamen en houders van rechten op die naam worden opgelost?

Peter Vergote, Legal & Administrative manager DNS Belgium vzw

Evaluatieactiviteiten

Evaluatie: Intellectual Property Management (B-KUL-G2B01a)

Type : Examen buiten de normale examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen, Gesloten vragen
Leermateriaal : Geen

Toelichting

Voor (initiële) masterstudenten :

- individueel schriftelijk examen (duurtijd 2 u).
- Tijdstip : er zijn – naar keuze van de student – twee examenmomenten: één tijdens de eerste blokweek en één tijdens de examenperiode
- Het examen bestaat uit 3 onderdelen met gelijke weging van de punten. Minstens twee onderdelen worden samengesteld aan de hand van de vragenlijst die zich in het cursusmateriaal bevindt.
De derde vraag kan een open essayvraag omvatten waarbij aan de studenten gevraagd wordt om een gestructureerd, begrijpelijk en inhoudelijk correct advies af te leveren over een concreet probleem of vraagstelling dat verband houdt met de bescherming en het beleid rond (bepaalde) intellectuele rechten


Voor doctoraatsstudenten : keuze tussen
- (i) individueel schriftelijk examen (zie hoger - masterstudenten ) OF
- (ii) indiening van een paper (ong. 15 à 20 blz) over een door de student vrij te bepalen thema (bij voorkeur aansluitend bij het onderwerp van de doctoraatsverhandeling of specialisatie).

Toelichting bij herkansen

Er is een tweede examenkans in de derde zittijd. De examenvorm en vraagvorm blijven voor beide examenkansen gelijk.

ECTS Engineering Economy (B-KUL-H00K1A)

3 ECTS English 31 First termFirst term

Aims

The student has a broad view on economical (decision oriented) problems engineers will encounter in their professional career.  The student obtains insights in methods such as PW, FW and AW (present worth, future worth and annual worth), C/B calculations (cost/benefit), replacement decision making and cost estimation.  The student assimilates these methods  to allow for real-life application.

Previous knowledge

bachelor engineering or other bachelor in science & technology

Is included in these courses of study

Onderwijsleeractiviteiten

Engineering Economy: Lecture (B-KUL-H00K1a)

2.44 ECTS : Lecture 20 First termFirst term

Content

The student has a broad view on economical (decision oriented) problems engineers will encounter in their professional career.  The student obtains insights in methods such as PW, FW and AW (present worth, future worth and annual worth), C/B calculations (cost/benefit), replacement decision making and cost estimation.  The student assimilates these methods  to allow for real-life application.

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  • Blank, L. and Tarquin, A., Engineering Economy, 7th edition, McGraw-Hill, NY, 2012
  • academic papers

 

Language of instruction: more information

The course is taught and examined in English

Format: more information

ex cathedra + interactive discussions

Engineering Economy: Workshops (B-KUL-H03K2a)

0.56 ECTS : Practical 11 First termFirst term

Content

Exercises and cases (made available on Toledo beforehand) are solved and discussed. Case studies are exercises placed in a realistic business context, they call for more analysis and insight than classic exercises, as  data need to be distilled from a text describing a business situation, often there are too much data or not enough data (here assumptions are needed), .  Often they call for integration of concepts from different chapters. In the interpretation of the case study results the business context plays an important role: how important is the investment under study for the company in question?  how large can the negative investment value (present worth) be for a strategic investment?

Course material

exercises (Toledo)

Language of instruction: more information

English

Evaluatieactiviteiten

Evaluation: Engineering Economy (B-KUL-H20K1a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions
Learning material : List of formulas, Calculator

Explanation

As this exam is closed book, you cannot bring any written or printed material or laptop/tablet/ ... to the exam, only a simple calculator.  At the exam you will be provided with a formularium, it comes with the exam questions; you cannot bring your own.

ECTS Maintenance Management (B-KUL-H00M4A)

3 ECTS English 20 Second termSecond term

Aims

The student knows the theoretical foundations for analyzing and optimizing maintenance situations.  The student obtains insight in the practical issues of maintenance and asset management, both in industry and service organizations.

Previous knowledge

bachelor of engineering or other bachelor science & technology

Onderwijsleeractiviteiten

Maintenance Management (B-KUL-H00M4a)

3 ECTS : Lecture 20 Second termSecond term

Content

The course addresses managerial issues in asset/maintenance management for organizations both in industry (production plants) and service industry (hospitals, distribution centra, ...).  Topics included are: organization of the maintenance department (structure of a technical department, technical department in the organization chart), personnel management (scheduling of jobs, safety in working environment),  auditing and performance reporting (follow-up on the performance of the technical department), maintenance concept decisions (from corrective to preventive to predictive to prognostic maintenance, what about Reliability Centered Maintenance, Total Productive Maintenance ...) 
 
The course introduces quantitative managerial decision making models for mailny spare part policies (inventory control), risk management, RAMS estimation (RAM = reliability, availability, maintainability, sustainability), policy optimization/simulation models (e.g. to determine the frequency of maintenance),...  
 
Attention is paid to theoretical basis concepts and to practical applicability

 

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

* Maintenance Management, Pintelon et al., ACCO, Leuven, 2006 (new version expected, 2014)
* Recent journal publications and Internet material
* Slides available on Toledo

Language of instruction: more information

the course is taught and examined in English

Format: more information

* Classes: partly ex cathedra, mainly interactive.  Theory, exercises and cases (guided independent study).

Evaluatieactiviteiten

Evaluation: Maintenance Management (B-KUL-H20M4a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Paper/Project
Type of questions : Open questions
Learning material : Calculator

ECTS Total Quality Management (B-KUL-H00N6A)

3 ECTS English 20 Second termSecond term

Aims

Introduction to Total Quality Management (TQM): philosophy and concepts (part I), tools and techniques (part II)

Identical courses

H00N6B: Total Quality Management

Is included in these courses of study

Onderwijsleeractiviteiten

Total Quality Management (B-KUL-H00N6a)

3 ECTS : Lecture 20 Second termSecond term

Content

The course Total Quality Management (TQM) begins with an introductory chapter which defines some basic concepts in TQM and also gives an overview of the historical evolution of TQM. The first part of the course discusses the TQM organisation for the industrial as well as for the service environment. In this part the role of management in TQM and the importance of the behaviour of workers are studied. Attention is given to the TQM implementation process and the development of a quality system, according ISO 9000. In the second part of the course quantitative techniques frequently used in TQM are studied, for example statistical process control, Pareto analysis, Ishikawa diagrams, etc...

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Goetsch, D.L. and Davis, S., Quality Management for Organizational Excellence: Introduction to Total Quality, 7th edition, Pearson, Boston, 2013

Language of instruction: more information

the course is taught and examined in English

Is also included in other courses

H00N6B : Total Quality Management

Evaluatieactiviteiten

Evaluation: Total Quality Management (B-KUL-H20N6a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions
Learning material : None

Explanation

A formularium will be provided.  For the multiple choice questions a guess correction  is used.

ECTS Ecodesign and Life Cycle Engineering (B-KUL-H00O3A)

3 ECTS English 28 Second termSecond term
Duflou Joost (coordinator) |  Dewulf Wim |  Duflou Joost

Aims

A first aim of this course is to realise a larger consciousness on the consequences of design decisions in the course of a complete product life cycle. To evaluate existing products and design alternatives, and furthermore to better control the design process, a series of analysis techniques and methods for design optimization will be presented.
Special attention goes to the environmental impact of design decisions. The aim here is to educate engineers that are aware of their influence on the living environment and that are able to offer their contribution to a sustainable use of the available raw materials.Along with these themes, the continuous tension between marketing considerations and technical possibilities is not be disregarded. A thorough understanding of the company-economic product life cycle, related costs and derived business models, crucial to assure cost-effectiveness of a company, will thus also be one of the aims.

Previous knowledge

The student has a solid scientific background, preferably engineering.
This course is not specifically connected to a graduating programme, but is rather relevant as a completion to programmes that are (among others) aimed at the development of new products. The contents of the final assignment can be adjusted to the programme of the student. It is recommended to plan the course in a late stage of a master program, so that the lack of technical  luggage does not form an obstacle for the case studies or the final assignment.

Is included in these courses of study

Onderwijsleeractiviteiten

Ecodesign and Life Cycle Engineering (B-KUL-H00O3a)

3 ECTS : Lecture 28 Second termSecond term

Content

Introduction: course info, positioning, overview of the most important environmental effects
Life cycle analysis LCA
DfE techniques:
  - Design guidelines
  - LIDS wheel
  - MET matrix
  - Material choice techniques
  - EPIndicators
  - DfE Toolboxes
  - DfR/DfD techniques
  - Fast LCA methods
  - Parametric LCALife Cycle Costing
Retraction logistics
Industrial ecosystems
Legislation and norms
Software-support: workshop
  - Eco Indicator
  - IdematCase Studies
Final presentations by the students

Course material

Handouts available through Blackboard.

Evaluatieactiviteiten

Evaluation: Ecodesign and Life Cycle Engineering (B-KUL-H20O3a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : None

Explanation

A final assignment per two students results in a report that is presented during the exam period followed by a question session. Timing for this presentation is coordinated per team of students. 

ECTS Smart Distribution Systems (B-KUL-H00P3A)

3 ECTS English 28 Second termSecond term

Aims

The students have obtained a deep insight and understanding in smart distribution systems, as a key concept for smart grids.

They master different applications for monitoring and control in smart distribution grids, and are able to design a suited architecture for implementing these.

Such architecture consists of the necessary information and communication technologies, the control and coordination, and the application layer.

They master the concept of interoperability, and have an overview of the relevant communication protocols and standards. They are able to position these from a communication perspective into different layers, and to select suited a suited protocol from an application perspective.

They have an insight in the European roadmaps to smart grids, and are able to position research topics in this domain.

Previous knowledge

This course relies upon

  • Bachelor course H01L8 'Elektrische energie en aandrijvingen - electrical energy and drives'  or equivalent
  • H04A0 Power systems

Besides, some knowledge of a programming language (e.g. Java, Python) is assumed.

Onderwijsleeractiviteiten

Smart Distribution Systems: Theory (B-KUL-H00P3a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

1 Towards smart distribution systems

  • classical distribution grids (network, distribution system operators, consumers, performance parameters)
  • distribution system automation
  • evolution in distribution grids
  • smart grids (definitions, smart grid applications)
  • smart homes, grids, cities
  • smart meters (functionality, Flanders, market process, European perspective, cost/benefit analysis)

2 Robust smart grid control

  • control coordination taxonomy
  • coordination for appliance control
  • demand response programmes
  • using residential demand flexibility>
  • machine learning and big data
  • dependability concepts
  • cybersecurity

3 Interoperability and ICT for smart grids

  • SGAM - smart grid architecture model
  • basics of information and communication technology
  • communication architectures
  • network access at OSI 1-2
  • integrated protocols OSI 1-7
  • information models at OSI 5-7
  • application protocols

4 Smart grid research and applications

  • capita selecta

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

available on toledo:

  • handouts / slides
  • articles / reports
  • background reading

Format: more information

Traditional lecture

Courses are ex cathedra. Students have to read the additional material, to digest it and to understand it.

Smart Distribution Systems: Exercises and Laboratory Sessions (B-KUL-H00P4a)

0.59 ECTS : Practical 10 Second termSecond term

Content

In a lab session at the KU Leuven labs in EnergyVille, a smart distribution grid setup is deployed and operated.

  • Grid parameters such as line impedance and feeder topology are considered; system failures are emulated and solutions are to be developed. The varying and contradictory objectives of multiple actors in the electric energy sector are explored.

During PC sessions, the students apply machine learning to selected smart grid applications.

Course material

Text describing set-up and assignment.

(via toledo)

Format: more information

Computer session - Laboratory session - Report

Evaluatieactiviteiten

Evaluation: Smart Distribution Systems (B-KUL-H20P3a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material

Explanation

Oral open book exam with written preparation

 

ECTS Natural Language Processing (B-KUL-H02B1A)

4 ECTS English 33 First termFirst term Cannot be taken as part of an examination contract

Aims

The course focuses on methods and algorithms for building computer software that understands, generates and manipulates human language. We study the algorithms and models while introducing core tasks in natural language processing (NLP), including language modelling, morphological processing, POS tagging, syntactic analysis, semantic interpretation, machine translation, coreference resolution, discourse analysis, and dialogue modelling. We illustrate the methods and technologies with current applications in real world settings.

After following this course, the student has acquired theoretical and practical understanding of contemporary machine learning models designed for processing human language and of the underlying computational properties of NLP models. The student will have learned how underlying linguistic phenomena, that is, the linguistic features, can be modelled and automatically learned from data using deep learning techniques.

Previous knowledge

This course focuses on the algorithms, mathematical modeling and machine learning methods for processing human language. We rely on a good understanding of the machine learning foundations. Hence there is the prerequisite to have successfully passed or to follow in parallel a machine learning course (e.g., Machine Learning and Inductive Inference - B-KUL-H02C1A, Principles of Machine Learning - B-KUL-H0E98A, Artificial Neural Networks and Deep Learning - B-KUL-H02C4A). Knowledge of the basics of linear algebra and of probability theory is required.

Students who also want to deepen their knowledge of the linguistic aspects of natural language processing are recommended to follow this advanced natural language processing course and the course Linguistics and Artificial Intelligence (B-KUL-H02B6A) in parallel.

Is included in these courses of study

Onderwijsleeractiviteiten

Natural Language Processing: Lecture (B-KUL-H02B1a)

3.5 ECTS : Lecture 20 First termFirst term

Content

1. Introduction

  • What is natural language processing (NLP)?
  • Current state-of-the-art of NLP
  • Ambiguity
  • Other challenges
  • Representing words, phrases and sentences
     

2. Segmentation and tokenization

  • Regular expressions
  • Word tokenization, lemmatization and stemming
  • Sentence segmentation
  • Subword tokenization
     

3. Language Modelling

  • N-gram language models
  • perplexity
  • maximum likelihood estimation
  • smoothing
     

4. Neural Language Modelling

  • Word embeddings
  • Vector space models for NLP
  • Recurrent neural network (RNN) for language modelling
  • Transformer architecture for language modelling
  • Use of language models in downstream tasks: fine-tuning and pretraining
     

5. Part-of-Speech (POS) Tagging

  • Hidden Markov model and viterbi
  • Conditional Random Fields
  • (Bi)LSTM for POS tagging
  • Encoder-decoder architecture for sequence-to-sequence labeling
     

6. Morphological analysis

  • Inflection and derivation
  • Finite state morphology
  • Sequence-to-sequence neural models of morphological inflection
     

7. Syntactic Parsing

  • Universal Dependencies
  • Dependency parsing: Graph based dependency parsing, transition based dependency parsing
  • Constituent parsing with a (probabilistic) context free grammar ((P)CFG) and the Cocke-Younger-Kasami (CYK) algorithm
     

8. Semantics (lexical and compositional)

  • Word sense disambiguation
  • Semantic role labelling
     

9. Discourse: Coreference Resolution

  • Discourse coherence
  • Algorithm of Hobbs
  • Neural end-to-end coreference resolution
     

10. Question Answering

  • Evolution of QA systems from rule-based to neural 
  • Complex pipelines to end-to-end to retrieval-free
  • Closed-domain vs open-domain
  • Text-only vs multimodal
     

11. Neural Machine Translation

  • Encoder-decoder architecture (e.g., RNN, transformer-based)
  • Attention models
  • Improvements and alternative architectures that deal with limited parallel training data
     

12. Conversational Dialogue Systems and Chatbots

  • Task oriented dialog agents: Rule based versus neural based approaches
  • Chatbots: End-to-end sequence-to-sequence neural models
     

Course material

Handbooks

Daniel Jurafsky and James H. Martin. 2024. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition with Language Models,
3rd edition.

Jacob Eisenstein. 2019. Introduction to Natural Language Processing. MIT Press.

Yoav Goldberg. 2016. A Primer on Neural Network Models for Natural Language Processing.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

  
+ recent articles: e.g., of the proceedings of the Meetings of the ACL, AAAI, NeurIPS.

Format: more information

Interactive lectures with short exercises.

Is also included in other courses

G0D25A : Natural Language Processing

Natural Language Processing: Exercises (B-KUL-H00G0a)

0.5 ECTS : Practical 13 First termFirst term

Content

  • Exercises on tokenization and segmentation
  • Exercises on language modelling and POS tagging
  • Exercises on syntactic parsing
  • Exercises on semantic and discourse processing
  • Exercises on machine translation
  • Exercises on question answering

Is also included in other courses

G0D25A : Natural Language Processing

Evaluatieactiviteiten

Evaluation: Natural Language Processing (B-KUL-H22B1a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions, Closed questions
Learning material : Calculator, Course material

Explanation

Open book written exam featuring a mixture of theory and exercise questions.

ECTS Philosophy of Mind and Artificial Intelligence (B-KUL-H02D5A)

4 ECTS English 26 Second termSecond term Cannot be taken as part of an examination contract

Aims

Students should be able to reflect critically on the philosophical questions about AI.

Previous knowledge

No specific requirements.

Is included in these courses of study

Onderwijsleeractiviteiten

Philosophy of Mind and Artificial Intelligence (B-KUL-H02D5a)

4 ECTS : Lecture 26 Second termSecond term

Content

The course focuses on two kinds of questions regarding AI:


1. Metaphysical questions: Can machines think? Do robots have consciousness? Etc.


2. Ethical questions: Does AI create a responsibility gap? How should we deal with bias? Etc.

Course material

Papers and slides/notes.

Language of instruction: more information

English.

Format: more information

Most of the classes are classical lectures, two classes consist of discussions between students on papers.

Evaluatieactiviteiten

Evaluation: Philosophy of Mind and Artificial Intelligence (B-KUL-H22D5a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions
Learning material : None

Explanation

The exam consists of both open questions and closed questions (multiple choice). The closed questions are corrected with a guess correction.

ECTS Bio-informatics (B-KUL-H02H6B)

4 ECTS English 20 Second termSecond term Cannot be taken as part of an examination contract

Aims

The course describes data-mining methods in bioinformatics. The biological content is kept to a bare minimum. The focus is on probabilistic models (sequence alignment as dynamic programming, Expectation-Maximization, Markov Chain Monte Carlo methods). The content is very relevant to data-mining applications outside bioinformatics. The emphasis lies on the basic concepts underlying probabilistic methods and how they are transformed into practical applications.

The first objective of the course is for students to acquire a coherent understanding of the main probabilistic models, optimization criteria, and optimization algorithms used in bioinformatics:
* Models: generative models, hidden Markov models, breakpoint change models
* Estimation and inference: maximum likelihood, maximum a posteriori, Bayesian inference
* Algorithms: dynamic programming, Expectation-Maximization, Markov Chain Monte Carlo, Gibbs sampling.

Also, through the study of the diverse applications of such models to biological problems, the course aims at developing the capacity of the student to translate simple biological problems into data analysis problems using probabilistic models. Finally, students will also develop the capacity to derive appropriate algorithms for the optimization of a given probabilistic model.

Previous knowledge

Actual fluency in calculus and with the basic concepts of probability theory and statistics.

Is included in these courses of study

Onderwijsleeractiviteiten

Bio-informatics (B-KUL-H02H6a)

4 ECTS : Lecture 20 Second termSecond term

Content

1. Introduction to molecular biology
    - DNA
    - RNA
    - Proteins
 
2. Sequence alignment
    - Dynamic programming
    - Global and local alignment
    - BLAST
 
3. Introduction to Bayesian statistics
    - The Cox-Jaynes axioms
    - Maximum likelihood, maximum a posteriori, and Bayesian inference
    - Dirichlet distributions and pseudocounts

4. Hidden Markov Models  (HMMs)
      - Viterbi decoding
      - Forward-backward algorithm
      - HMM estimation with known paths
      - Viterbi learning
      - Baum-Welch algorithm

5. Applications of HMMs
    - Modeling protein families
    - Gene prediction
 
6. Expectation-Maximization for clustering and motif finding
    - The EM algorithm
    - EM for clustering
    - EM for motif finding
 
7. Gibbs sampling for motif finding and biclustering
    - Markov Chain Monte Carlo methods
    - Gibbs sampling
    - Motif finding

Course material

R. Durbin, A. Krogh, G. Mitchinson, S. Eddy, "Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids", Cambride University Press, 1999.

Powerpoint slides

Handwritten notes

Evaluatieactiviteiten

Evaluation: Bio-informatics (B-KUL-H22H6b)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : None

Explanation

The exam consists of three questions:
* 1 theoretical question (e.g., describe one of the algorithms of the course)
* 1 theoretical exercise (e.g., derive a new relationship relevant to the material of the course)
* 1 practical exercise (e.g., apply one of the algorithms to a simple case)

ECTS Milieuproblemen en -technieken (B-KUL-H02J6A)

3 studiepunten Nederlands 22 Tweede semesterTweede semester
Van Gerven Tom (coördinator) |  Van der Bruggen Bart

Doelstellingen

Bij het einde van dit opleidingsonderdeel moeten de studenten:

  • de evolutie van het algemene beleid rond milieuproblematiek kunnen beschrjiven
  • verontreinigende stoffen, hun vorming, bronnen, eigenschappen en effecten kunnen beschrijven, dit zowel voor lucht- en waterverontreiniging en de afvalstoffenproblematiek
  • een aantal methoden voor het beheersen van milieuverontreiniging kunnen uiteenzetten, en dit zowel preventief als curatief
  • oplossingen kunnen voorstellen voor het beheersen van milieuverontreiniging: luchtzuivering, waterverontreiniging, afvalstoffenproblematiek

 

Begintermen

Scheikunde en fysica op bachelorniveau, zoals gedoceerd in de Faculteit ingenieurswetenschappen.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Milieuproblemen en -technieken (B-KUL-H00Q8a)

3 studiepunten : College 22 Tweede semesterTweede semester

Inhoud

INLEIDING

  • "Green engineering" en Duurzaamheid

MILIEUPROBLEMEN

  • Polluenten en eenheden
  • Risico, impact en blootstelling

PREVENTIEVE BENADERING

  • Preventie van vervuiling in procestechnologie
  • Systeembenadering (stroomschema en industriële ecologie) 
  • Pinch analyse

CURATIEVE BENADERING

  • Technologieën voor de behandeling van water, lucht en afvalstoffen

Studiemateriaal

Studiekost: 1-10 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

  • Powerpointpresentatie van de lessen, op Toledo

Toelichting werkvorm

Er wordt van de student verwacht dat hij/zij:

  • De (interactieve) lessen volgt
  • De powerpointpresentatie bestudeert  met behulp van genomen nota's, en tracht verbanden te leggen over de cursus heen

Komt ook voor in andere opleidingsonderdelen

H01E7A : Milieuproblemen en -technieken

Evaluatieactiviteiten

Evaluatie: Milieuproblemen en -technieken (B-KUL-H22J6a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Gesloten vragen, Open vragen

ECTS System Identification and Modeling (B-KUL-H03E1B)

4 ECTS English 39 First termFirst term Cannot be taken as part of an examination contract
De Moor Bart (coordinator) |  De Cock Katrien |  De Moor Bart |  Konar Aritra |  N. |  De Cock Katrien (substitute) |  Konar Aritra (substitute)  |  Less More

Aims

Estimating mathematical models, starting from measured data, is an important step in many engineering methods. This course contains a number of important methods and foundations for linear system identification and modeling. We discuss topics such as choosing a good model structure, appropriate parametrizations, criteria for model selection and statistical properties of the obtained estimates. The course deals with least squares estimation, prediction error techniques, state space models and realization theory. The emphasis is on methods that offer a good generalization. The methods are illustrated with many practical examples and applications.

Previous knowledge

Skills: the student should be able to analyze, synthesize and interpret
 

Knowledge:

  • Necessary: calculus, applied linear algebra, probability theory and statistics, system theory
  • Useful, but not necessary: control theory

 

Detailed list of prerequisites:


1. Calculus: Analyse 1 (H01A0B), Analyse 2 (H01A2B)

  • Logic reasoning and mathematical proofs
  • Functions of real numbers, e.g., trigonometric, exponential, logarithmic
  • Functions of vectors
  • Differentiation and integration of univariate and multivariate functions
  • Partial derivatives
  • Complex numbers: addition, multiplication, powers of complex numbers
  • Vector spaces, gradient
  • Analytic geometry: Cartesian coordinates and polar coordinates
  • Differential equations: set up and solve linear differential equations and sets of differential equations
  • Taylor series
  • Optimization problems: formulate, solve and interpret, with equality and inequality constraints, method of Lagrange
  • Difference equations: solve linear difference equations and sets of difference equations

 

2. Applied linear algebra: Toegepaste Algebra (H01A4B); David Lay, “Linear Algebra and its Applications"

  • Familiarity with concepts from linear algebra in higher dimensions: vector spaces, linear dependence, orthogonality
  • Matrix computations: addition, multiplication with scalar, product of matrices, inverse of a matrix
  • Determinant
  • Partitioned matrices
  • Vector spaces: subspaces, linear transformations, basis, dimension, orthogonal complement of subspaces, orthogonal projection
  • Rank, column space, row space, null space of a matrix
  • Eigenvalue decomposition: characteristic polynomial, Cayley-Hamilton theorem, similar matrices
  • Singular value decomposition, QR factorization
  • Recognize and solve least squares problems
  • Pseudo-inverse of a matrix and relation to least squares
  • Algebraic models for engineering problems: Setting up a set of linear equations, processing of experimental results, analyzing autonomous systems and vibrations as an eigenvalue problem, computing the response of linear time-invariant discrete-time systems, dimensional reduction by means of the singular value decomposition
  • Use MATLAB to do matrix computations

 

3. Probability Theory and Statistics: Kansrekenen en statistiek (H01A6A)

  • Basic principles of probability theory: random variables, probability distributions
  • Variance, standard deviation, covariance, correlation
  • Estimation of parameters
  • Confidence intervals
  • Regression analysis

 

4. System Theory: Systeemtheorie en regeltechniek (H01M8A)

  • Basics about modeling mechanical, electrical, thermal and hydraulic systems
  • Block diagrams
  • Convolution, Laplace transform and Z transform (and their inverse)
  • Fourier series
  • Linear time invariant systems
  • Impulse response and transfer function
  • Poles and zeros of a system
  • Stability
  • State-space representation
  • Analysis of continuous-time and discrete-time systems in the time domain and in the frequency domain
  • Modeling and linearization
  • Discretization of continuous-time systems

Identical courses

H0S14A: Systeemidentificatie en modellering

Onderwijsleeractiviteiten

System Identification and Modeling : Lecture (B-KUL-H03E1a)

2 ECTS : Lecture 26 First termFirst term

Content

1. Introduction to System Identification and Modeling

  • data science, tsunami of data
  • dynamical models
  • machine learning vs system identification
  • mathematical modeling cycle = system identification loop
  • cases
  • more examples
  • interesting books

2. Linear Algebra for System Identification and Modeling

  • vectors and matrices
  • the singular value decomposition
  • eigenvalue problems

3. Optimization and Least Squares

  • optimization: unconstrained and constrained
  • ordinary least squares
  • weighted least squares
  • total least squares
  • recursive least squares

4. Models for Dynamical Systems

  • dynamical systems
  • system identification
  • misfit vs latency
  • commonly used models
  • state space models

5. System Identification by Least Squares

  • identification of an AR model
  • identification of an ARX model
  • other cases that reduce to ARX identification
  • recursive least squares in system identification

6. Prediction Error Methods

  • identification problem
  • prediction error
  • cost function
  • parameterizations
  • persistency of excitation
  • statistical properties
  • properties of identified transfer functions
  • system not in model set
  • model structure validation
  • frequency domain interpretation
  • preprocessing of data
  • user choices
  • validation

7. Realization Theory

  • realization of input-output state space model from impulse response
  • realization of autonomous system from output 
  • application: direction of arrival

8. Balanced Model Order Reduction

  • controllability and observability
  • energy interpretation of controllability and observability
  • controllability and observability Gramians
  • balanced realization
  • balanced model order reduction
  • application

Course material

The digital version of the course slides is provided in Toledo.

System Identification and Modeling : Exercises and Laboratory Sessions (B-KUL-H03E2a)

1 ECTS : Practical 13 First termFirst term
De Moor Bart |  Konar Aritra |  N. |  De Cock Katrien (substitute)

Course material

The assignments and instructions are provided in Toledo.

System Identification and Modeling : Project (B-KUL-H09N1a)

1 ECTS : Assignment 0 First termFirst term
De Cock Katrien |  De Moor Bart |  N. |  Konar Aritra (substitute)

Evaluatieactiviteiten

Evaluation: System Identification and Modeling (B-KUL-H23E1b)

Type : Exam during the examination period
Description of evaluation : Oral
Learning material : Course material

ECTS Optimization (B-KUL-H03E3A)

6 ECTS English 50 First termFirst term Cannot be taken as part of an examination contract

Aims

The course gives insight into the mathematical formulation of optimization problems and deals with advanced methods and algorithms to solve these problems. The knowledge of the possibilities and shortcomings of these algorithms should lead to a beter understanding of their applicability in solving concrete engineering problems. In the course, an overview of existing software for optimization will also be given, this software will be used in the practical exercise sessions. The student learns to select the appropriate solving methods and software for a wide range of optimization problems and learns to correctly interpret the results.

The following knowledge and skills will be acquired during this course:

  • The student will be able to formulate a mathematical optimization problem starting from a concrete engineering problem.
  • The student will be able to classify optimization problems into appropriate categories (e.g., convex vs. non-convex problems).
  • The student will be familiar with different optimization strategies and their properties, and will hence be able to decide which strategy to use for a given optimization problem.
  • The student will be able to formulate the optimality conditions for a given optimization problem.
  • The student will have a profound understanding of a wide variety of optimization algorithms and their properties, and will be able to apply the appropriate algorithms for a given optimization problem.
  • The student will be familiar with state-of-the-art optimization software packages, and will be able to use these in an efficient manner.

Previous knowledge

Skills: the student should be able to analyze, synthesize and interpret.
Knowledge: Analysis, Numerical mathematics, Numerical linear algebra.

Identical courses

H0S15A: Optimalisatie

Is included in these courses of study

Onderwijsleeractiviteiten

Optimization: Lecture (B-KUL-H03E3a)

4 ECTS : Lecture 30 First termFirst term

Content

1. Introduction
- a number of motivating examples (control, fitting, planning)
- mathematical modelling of optimization problems
- the importance of convexity
- classification of optimization problems
2. Algorithms for continuous optimization without constraints
- the two basic strategies: line search or trust region techniques
- gradient-based techniques: the steepest gradient and the added gradient method
- Newton and quasi-Newton techniques
- special methods for non-linea least square problems
3. Algorithms for continuous optimization with constraints
- the KKT-optimization conditions
- algorithms for linear problems: simplex-method and primal-dual interior point method
- algorithms for quadratic problems: active-set technique and interior point method
- convex optimization: formulation, the concept duality, algorithms
- general non-linear optimization (penalizing and barrier techniques, connection to interior point algorithms)

4. Introduction to global optimization methods
- deterministic methods (branch and bound, ...)
- stochastic and heuristic methods (Monte Carlo methods, simulated annealing, evolutionary algorithms, swarm-based algorithms,...)

5. Software
- discussion of the possibilities of the most current optimization software-packages
- sources on the internet: the Network Enabled Optimization Server

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

- Numerical Optimization, J. Nocedal and S. Wright, Springer, New York, 1999.
- Optimization Software Guide, J. Moré and S. Wright, SIAM, Philadelphia, 1993.

Is also included in other courses

H04U1C : Optimization of Mechatronic Systems

Optimization: Exercises and Laboratory Sessions (B-KUL-H03E4a)

2 ECTS : Practical 20 First termFirst term

Content

Exercises and lab sessions with the course Optimisation

Evaluatieactiviteiten

Evaluation: Optimization (B-KUL-H23E3a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions

Explanation

- part I, theory (closed-book with use of formulary) 
- part II, exercises (Open-book on computer; example programs are available)

ECTS Industriële stage: Elektrotechniek / Industrial Internship: Electrical Engineering (B-KUL-H03F6A)

6 studiepunten Nederlands 120 Eerste semesterEerste semester Uitgesloten voor examencontract Uitgesloten voor creditcontract

Doelstellingen

Het doel van deze stages is niet alleen kennis maken met de bedrijfswereld en het opdoen van relevante industriële ervaring, maar ook in deze periode iets van betekenis te kunnen realiseren voor het bedrijf. Door in het bedrijf mee te werken in een groep, leert de student de gebruikte methodes binnen het bedrijf kennen en verkrijgt hij een beter inzicht in de praktische aspecten van het bedrijfsleven. Aldus wordt de overgang van de grondige theoretische opleiding, die de student aan onze universiteit geniet, naar de beroepsloopbaan vergemakkelijkt.

Begintermen

Normaal wordt verwacht dat de student deze stage uitvoert tijdens het zomerverlof tussen de eerste en de tweede fase van de masteropleiding. In uitzonderlijke gevallen kan deze ook uitgevoerd worden na het bekomen van een bachelordiploma. De stageverantwoordelijke en de optiecoördinator oordelen samen of de student voldoende voorkennis bezit.

Volgtijdelijkheidsvoorwaarden



(SOEPEL (H05D3A) OF SOEPEL (H05D5A)) EN (SOEPEL (H06A3A) OF SOEPEL (H05B3A)) EN (SOEPEL (H09I0A) OF SOEPEL (H09J6A)) EN (SOEPEL (H05F1A) OF SOEPEL (H05F3A))


H05D3AH05D3A : Computer Architectures
H05D5AH05D5A : Computerarchitecturen
H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing
H05B3AH05B3A : Analoge en gemengde bouwblokken voor signaalverwerking
H09I0AH09I0A : Ontwerp van digitale platformen
H09J6AH09J6A : Design of Digital Platforms
H05F1AH05F1A : Digital Signal Processing for Communications and Information Systems
H05F3AH05F3A : Digitale signaalverwerking voor communicatie- en informatiesystemen

Onderwijsleeractiviteiten

Industriële stage: Elektrotechniek / Industrial Internship: Electrical Engineering (B-KUL-H03F6a)

6 studiepunten : Stage 120 Eerste semesterEerste semester

Toelichting werkvorm

Alle informatie is te vinden op de stagepagina van de opleiding. Deze pagina wordt regelmatig aangepast.

Evaluatieactiviteiten

Evaluatie: Industriële stage: Elektrotechniek / Industrial Internship: Electrical Engineering (B-KUL-H23F6a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Verslag, Presentatie, Procesevaluatie

Toelichting

De student moet een rapport over de werkzaamheden en de begeleiding overhandigen en een mondelinge uiteenzetting geven over het verblijf.

 

Toelichting bij herkansen

Enkel wanneer de student tijdens de stage zelf niet voldoet aan de minimaal voorgeschreven vereisten, zal hij/zij niet slagen. Een tweede examenkans impliceert dus een volledig nieuwe stage, wat binnen eenzelfde jaar onmogelijk is.

ECTS Advanced Methods in Cryptography (B-KUL-H03G5A)

4 ECTS English 40 Second termSecond term Cannot be taken as part of an examination contract

Aims

This course gives a thorough introduction to more advanced topics in modern cryptography, encompassing proper security models, cryptanalysis, and implementations attacks. The course deals with analytical methods and concepts in modern cryptography and how these can influence not only the design, but also the use and implementation of cryptosystems.  The selected topics are as follows:

·             Cryptanalytic algorithms determine largely the design and parameter choice of cryptographic algorithms

·             Provable security introduces the different modern definitions of encryption security / signature algorithm and shows why such strong definitions are necessary

·             Implementation attacks make use of information that leaks during the execution of an algorithm, such as time or power usage, to reconstruct the secret key. These attacks influence especially the way the cryptographic algorithms should be implemented.

·             FHE (Fully Homomorphic Encryption) are two recent technologies that allow us to compute on encrypted data in a privacy preserving manner, i.e. without leaking any information about the underlying data.

·             Post-quantum cryptography exemplifies the threat posed by quantum computers and how these can be mitigated by novel cryptographic schemes.

Following this course enables the student to make a first security analysis of a new cryptographic algorithm and to determine to which modern security definitions it conforms. This course bridges abstract discrete mathematics and these security analyses, and will therefore be taught from both points of view.

Previous knowledge

Skills: the student should be able to analyze, synthesize and interpret
Knowledge: basic knowledge of algebra (e.g. H01G5A), knowledge of cryptography and network security (e.g. H05D9A/H05E1A) is useful, but not necessary.

Onderwijsleeractiviteiten

Advanced Methods in Cryptography: Lecture (B-KUL-H03G5a)

2 ECTS : Lecture 20 Second termSecond term

Content

The course consists of lectures covering the following topics:

·         Symmetric key cryptanalysis: Differential cryptanalysis,  linear cryptanalysis, design of block ciphers

·         Public key constructions: Elliptic curve integrated encryption scheme, digital signature algorithm, full domain hash

·         Symmetric key constructions: Modes of operation, MAC functions, AEAD constructions.

·         Provable security & security models for encryption and signatures: perfect, semantic, polynomial security, passive, chosen ciphertext, adaptive chosen ciphertext attack; selective, existential forgeries, Fiat-Shamir transformation

·         Fully homomorphic encryption: homomorphic encryption, applications and limitations, integer-based encryption scheme, Gentry’s construction, bootstrapping

·         Post-quantum cryptography: mechanics of quantum computers, Shor’s algorithm, Learning With Errors problem, Regev encryption

·         Side channel attacks & countermeasures: Timing, power and EM radiation, SPA and DPA attacks, Simple countermeasures, Fault attacks, RSA and Chinese remaindering, partial key attacks

 


 

Course material

The course text consists of slides, overview articles and scientific articles. Additional information is provided on Toledo. 

Advanced Methods in Cryptography: Exercises and Laboratory Sessions (B-KUL-H03G6a)

2 ECTS : Practical 20 Second termSecond term
N. |  Delpech de Saint Guilhem Cyprien (substitute)

Content

See lectures.

Course material

Problem sheets will be provided beforehand so that the students can familiarize themselves with the exercises. 

Format: more information

Solving exercises.

Evaluatieactiviteiten

Evaluation: Advanced Methods in Cryptography (B-KUL-H23G5a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, Calculator

Explanation

The exam during the examination period is a written exam. It is an open book exam; additional texts may be consulted.

The exam consists of exercises and/or strength-weakness analysis and/or comparison of the cryptosystems explained in the course.

 

Information about retaking exams

Assessment is similar to the 1st exam opportunity.

ECTS Medical Imaging and Analysis (B-KUL-H03H5A)

6 ECTS English 56 Second termSecond term

Aims

After succesful completion of this course, the student should understand and be able to explain the physical and mathematical principles of medical imaging and image analysis. The student should have knowledge of and insight in the image data acquisition process of the main imaging modalities (RX, CT, MRI, SPECT/PET, US), the image reconstruction methods, the parameters that influence image quality (resolution, contrast, noise, artefacts), biological safety aspects and the processing and visualization of medical images. The main focus of the course is on the methodological concepts of various imaging and image analysis techniques, while imaging equipment and clinical applications are treated in less detail. 

After succesful completion of the course, the student should be able to relate the various physical principles underlying different imaging modalities to the complementary information different medical images provide for diagnosis and therapy planning. The student should also be able to appreciate the intrinsic connection between imaging and mathematics and the engineering challenges to bring these concepts into practice. 

Previous knowledge

Preliminary terms
A basic education in engineering, physics or mathematics is required.
The student must understand and command the basic concepts of digital signals and linear system theory, in particular Fourier theory.


Preliminary conditions
Having obtained credits in a course on linear system theory.

Is included in these courses of study

Onderwijsleeractiviteiten

Medical Imaging and Analysis: Lecture (B-KUL-H03H5a)

4.83 ECTS : Lecture 36 Second termSecond term

Content

The course follows the textbook 'Fundamentals of Medical Imaging" by Prof. em. Paul Suetens. 

In Chapter 1, an introduction to digital image processing is given. It introduces the terminology used, the aspects defining image quality, and basic image operations to process digital images.

Chapters 2 - 6 explain how medical images are obtained. The most important imaging modalities today are discussed: radiography (Chapter 2), computed tomography (Chapter 3), magnetic resonance imaging (Chapter 4), nuclear medicine imaging (Chapter 5), and ultrasonic imaging (Chapter 6). Each chapter includes (1) a short history of the imaging modality, (2) the theory about the physics of the signals and their interaction with tissue, (3) the image formation or reconstruction process, (4) a discussion of the image quality, (5) the different types of equipment today, (6) examples of the clinical use of the modality, (7) a brief description of the biologic effects and safety issues, and (8) some future expectations.

Chapters 7 gives an overview of medical image analysis approaches to extract quantitative information from the images to support diagnosis and therapy planning and presents some model-based strategies to deal with ambiguity in the images.

Chapter 8 describes 3D visualisation approaches and their use for image-based guidance during treatment and surgical interventions. 

 

Course material

Study cost: More than 100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Textbook: P. Suetens, Fundamentals of Medical Imaging, 3rd edition, Cambridge University Press, 2017.

Course material available on Toledo:

- PDF version of each chapter of the textbook for personal use only

- Slides and handouts per chapter

- Course notes with additional explanations

- Exercises and solutions

- A list of equations

- An appendix with basic notions of linear system theory

 

Format: more information

There are +/- 18 lectures of 2h each. The scheme of the lectures is planned as follows:

Lecture 1: Course organization. 

Lecture 1-2: Basics of digital image processing

Lecture 2-3: RX

Lecture 4-5: CT

Lecture 6-7-8-9: MRI

Lecture 10-11: SPECT/PET

Lecture 12-13: US

Lecture 14-15-16: Image analysis

Lecture 17: 3D visualization

The remaining lecture is used as back-up in case a lecture is cancelled.

Medical Imaging and Analysis: Exercises and Laboratory Sessions (B-KUL-H03H6a)

1.17 ECTS : Practical 20 Second termSecond term

Content

The exercise sessions are intended to foster insight by making the various concepts from the lectures more tangible with numerical examples and by exploring the underlying assumptions, benefits and limitations of specific imaging setups. The exercise sessions are organized in line with the course chapters. A guided tour in the university hospital is also organised as part of the exercise sessions. 

Session 1: Basic image processing.

Session 2-7: Imaging modalities: RX, CT, MRI, US, SPECT/PET

Session 8: Image analysis & Visualization for diagnosis and therapy

Session 9: Guided tour within the departments of Radiology and Nuclear Medicine of UZ Gasthuisberg, Leuven.

 

Course material

A list of exercises per chapter and their solutions are provided on Toledo.

Evaluatieactiviteiten

Evaluation: Medical Imaging and Analysis (B-KUL-H23H5a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : List of formulas

ECTS Biomedical Measurements and Stimulation (B-KUL-H03H7A)

6 ECTS English 56 First termFirst term
Dehaene Wim (coordinator) |  Dehaene Wim |  Kraft Michael |  Taurino Irene

Aims

This course covers the composing parts of biomedical electronic systems in the wide sense. The systems are discussed as

such but the focus is on the electronic circuits, the sensors and the actuators inside these systems. The final aim of the course is that the students can understand and analyse biomedical electronic systems, including the typical sensors and actuators that are used in a biomedical context. Design of biomedical electronic systems is less covered, but the course contains the necessary steps to address design problems in, for example, a master’s thesis.

Previous knowledge

Preliminary terms

Knowledge of basic concepts of electricity and electronics is mandatory.

Knowledge of basic concepts of system theory is mandatory.

Knowledge of sensors and measuring techniques is desirable.

 

Preliminary conditions

Credits obtained in a course on basic electricity and electronics.

Credits obtained in a course on system theory.

 

Examples of courses on electricity and electronics at KULeuven: H01Z2A "Elektrische Netwerken", H08T5A "Electronic Components, Circuits and Sensors".

Examples of courses on system theory at KULeuven: H01M8A "Systeemtheorie en regeltechniek", H08U4A "Systeemtheorie", I0N37A "Systeemanalyse".

Onderwijsleeractiviteiten

Biomedical Measurements and Stimulation: Biosensors: Lecture (B-KUL-H03H7a)

1.6 ECTS : Lecture 12 First termFirst term

Content

This part handles the operation of biochemical sensors.

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Course material made available by the teacher.

Biomedical Measurements and Stimulation: BioMEMS: Lecture (B-KUL-H0O48a)

1.6 ECTS : Lecture 12 First termFirst term

Content

This part handles the fabrication and use of MEMS in the context of bio-electronic systems. Pressure sensors, accelerometers but also neurostimulation electrodes will be explained.

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Course material made available by the teacher.

Is also included in other courses

H03H7B : Biomedical Measurements and Stimulation

Biomedical Measurements and Stimulation: Biocircuits: Lecture (B-KUL-H0O49a)

1.6 ECTS : Lecture 12 First termFirst term

Content

This part handles circuits typically used in bio-electronic systems. Examples are instrumentation amplifiers, AD convertors, class D drivers…

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Course material made available by the teacher.

Is also included in other courses

H03H7B : Biomedical Measurements and Stimulation

Biomedical Measurements and Stimulation: Biosensors: Exercise and Laboratory Sessions (B-KUL-H03H8a)

0.4 ECTS : Practical 5 First termFirst term

Content

These sessions are complementary to the lectures: the exercises expand on the theory covered in the lectures and more practical cases are illustrated and calculated.

Course material

Course material made available by the teacher.

Biomedical Measurements and Stimulation: BioMEMS: Exercise and Laboratory Sessions (B-KUL-H0O50a)

0.4 ECTS : Practical 5 First termFirst term

Content

These sessions are complementary to the lectures: the exercises expand on the theory covered in the lectures and more practical cases are illustrated and calculated.

Course material

Course material made available by the teacher.

Is also included in other courses

H03H7B : Biomedical Measurements and Stimulation

Biomedical Measurements and Stimulation: Biocircuits: Exercise and Laboratory Sessions (B-KUL-H0O51a)

0.4 ECTS : Practical 10 First termFirst term

Content

These sessions are complementary to the lectures: the exercises expand on the theory covered in the lectures and more practical cases are illustrated and calculated.

Course material

Course material made available by the teacher.

Is also included in other courses

H03H7B : Biomedical Measurements and Stimulation

Evaluatieactiviteiten

Evaluation: Biomedical Measurements and Stimulation (B-KUL-H23H7a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Calculator, Reference work, Course material

Explanation

The exam is open book.

Information about retaking exams

The retake exam is of the same form as the initial exam.
 

ECTS Data Mining and Neural Networks (B-KUL-H03V7B)

4 ECTS English 32 First termFirst term

Aims

Content:

Many application areas are characterized by a growing number of data, which are available and should be explored for improved modelling, efficient and automatic processing of data and extracting knowledge from the data. Typical examples include pattern recognition, biomedical engineering and bioinformatics, signal processing and system identification, process industry, fraud detection, web mining, e-commerce, financial applications, etc. In each of these areas, artificial neural networks are an important technique for analysis and design of systems. Neural networks are universal approximators, possess a parallel architecture and learn on-line or in batch mode from given sample patterns and lead to powerful methods for modeling. Training of neural networks can be done either supervised or unsupervised.

This course provides an overview of the main classical and advanced modern techniques on data mining and neural networks. Commonly used types of neural networks (such as multilayer perceptrons, radial basis function networks) are discussed, including structure, learning algorithms, optimization methods, on-line versus batch training, generalization aspects, validation, feedforward and recurrent networks, statistical interpretations, pruning, variance reduction, decision functions, density estimation and regularization theory. Special attention is given to efficient and reliable algorithms for classification and function estimation and processing of large data sets for data mining applications. Furthermore, emphasis is given on preprocessing, feature selection, dimensionality reduction and incorporation of expert knowledge. In addition to the classical neural network techniques in supervised learning more advanced methods are also addressed such as Bayesian inference, deep learning, statistical learning theory and support vector machines. With respect to unsupervised learning, cluster algorithms (and related methods such as EM algorithm), vector-quantization and self-organizing maps are discussed. Starting from linear and nonlinear principal component analysis, principles of stacked autoencoders and convolutional neural networks are explained for deep learning. Furthermore, deep learning based on attention and transformers, and generative models are discussed.

Lectures:

1. Introduction
2. Multilayer feedforward networks and backpropagation
3. Nonlinear modelling and time-series prediction
4. Classification and Bayesian decision theory
5. Generalization, Bayesian learning of neural networks
6. Vector quantization, self-organizing maps, regularization theory
7. Basic principles of support vector machines and kernel-based models
8. Nonlinear principal component analysis, autoencoders, deep learning with stacked autoencoders and convolutional neural networks
9. Generative models: deep Boltzmann machines, generative adversarial networks, variational autoencoders, others
10. Normalization, attention, transformers

 

Previous knowledge

basic knowledge of linear algebra

Is included in these courses of study

Onderwijsleeractiviteiten

Data Mining and Neural Networks: Lectures, Part 1 (B-KUL-H05R4a)

2.5 ECTS : Lecture 16 First termFirst term

Content

Lectures:

1. Introduction
2. Multilayer feedforward networks and backpropagation
3. Nonlinear modelling and time-series prediction
4. Classification and Bayesian decision theory
5. Generalization, Bayesian learning of neural networks
6. Vector quantization, self-organizing maps, regularization theory
7. Basic principles of support vector machines and kernel-based models
8. Nonlinear principal component analysis, autoencoders, deep learning with stacked autoencoders and convolutional neural networks
9. Generative models: deep Boltzmann machines, generative adversarial networks, variational autoencoders, others
10. Normalization, attention, transformers

Course material

- English course text in toledo

- Slides of the lectures are available in toledo

Format: more information

- Lectures and computer exercise sessions

- Report of the exercise sessions

Is also included in other courses

G9X29A : Data Mining and Neural Networks

Data Mining and Neural Networks: Lectures, Part 2 (B-KUL-H05R5a)

0.6 ECTS : Lecture 6 First termFirst term

Is also included in other courses

H03V7C : Advanced Data Mining and Neural Networks

Data Mining and Neural Networks: Training Sessions, Part 1 (B-KUL-H05R6a)

0.5 ECTS : Practical 6 First termFirst term

Content

computer exercise sessions

Format: more information

Report of the exercise sessions

Is also included in other courses

G9X29A : Data Mining and Neural Networks

Data Mining and Neural Networks: Training Sessions, Part 2 (B-KUL-H05R7a)

0.4 ECTS : Practical 4 First termFirst term

Is also included in other courses

H03V7C : Advanced Data Mining and Neural Networks

Evaluatieactiviteiten

Evaluation: Data Mining and Neural Networks (B-KUL-H23V7b)

Type : Exam during the examination period
Description of evaluation : Oral, Written
Type of questions : Open questions
Learning material : Course material

ECTS Power Systems (B-KUL-H04A0A)

3 ECTS English 28 First termFirst term

Aims

The student has acquired insight into the physical components of an electricity grid. The student has an overview of the elements that are necessary to ecologically and economically produce, transport and distribute electrical energy. He/she is knowledgable of the circuit and security devices for electrical installations as well as for grids. 

Previous knowledge

The student has an elementary knowledge of electricity, thermodynamics, materials and chemistry. 

Onderwijsleeractiviteiten

Power Systems: Lecture (B-KUL-H04A0a)

2.41 ECTS : Lecture 18 First termFirst term

Content

Part I. Power plants and installations
 
1. PRODUCTION OF ELECTRIC ENERGY
1.1 General introducion to power plants
1.2 Classic thermal plants
1.3 Nuclea thermal plants
1.4 Other plants with fossil fuels
1.5 Renewable energy sources
1.6 Special application (STEG plants, WKK, Repowering)
1.7 Production of electric energy, including the functioning are of the alternator
2. EXPLOITATION AND PLANNING OF POWER PRODUCTION
2.1 Characteristics of the demand of electric energy
2.2 Characteristics of the supply of electric energy
2.3 Attuning supply and demand
2.4 Covering demand
2.5 Frequency management and exchange programmes
2.6 Demand Side Management
2.7 Smoothing by a pumping plant
2.8 Interconnection with other production parks
2.9 Planning processes
3. CIRCUIT AND DISTRIBUTION INSTALLATIONS
3.1 Circuit plans for high and low voltage
3.2 Installations on high voltage
3.3 Installation on middle voltage
3.4 Circuit and distribution installations on low voltage
3.5 Operating and controlling installations
4. CIRCUIT BREAKERS
4.1 Physical processes during current interruptions
4.2 Influential factors during current interruptions
4.3 Interruption power
4.4 Constructive demands for circuits
4.5 Subdivision of circuit breakers according to their interruption capacities
4.6 Subdivision of circuit breakers according to their interruption medium (Pressed air, air, SF6 circuit breakers, vacuum, small oil volume)
4.7 Operation of circuit breakers and company security
5. SECURING ELECTRICAL INSTALLATIONS
5.1 Securing against overflows (by means of melting safeties and of automats)
5.2 Securing against over-voltage
5.3 Appliances that protect against other abnormal circumstances

Part II. Transport and distribution
6. BASIC CALCULATIONS FOR AN ELECTRICITY GRID
6.1 Choice of size and nature of voltage
6.2 Description of the HV circuit grid and of the distribution grid
6.3 Basic principles of regulating voltage on HV, MV and LV
6.4 Electrical line parameters and line equivalents
6.5 Calculation of voltage drop in a distribution grid
6.6 Principles of the calculation of laced grids
7. MATERIAL-RELATED ASPECTS OF OPEN AIR WIRING
7.1 Open air wires with white conductors
(Conductions, dimensioning, hanging, isolators, placement, posts)
7.2 Open air wires with isolated conductors
8. MATERIAL-RELATED ASPECTS OF UNDERGROUND CABLES
8.1 Construction of a cable
8.2 Middle voltage cables
8.3 High voltage cables with solid isolation (synthetic, paper)
8.4 High voltage cables with gas isolation
8.5 Special cables (forced cooling, megavoltage cables, submarine cables, cryocables)
8.6 Usage limitations
8.7 Laying cables, connections and sockets
9. PRINCIPLES FOR SECURING GRIDS
9.1 Securing against overflows
(selectivity, maximum current relay, distance relay, differential relay)
9.2 Special questions (earthing the zeropoint, I-limitation, fast reswitch)
9.3 Securing against over-voltage, including earth conductors
9.4 Coordination of isolation
10. TECHNICAL ASPECTS IN ELECTRICTY SUPPLY
10.1 Work factor and cos ö including calculation, placing and describing condensators
10.2 Reliability of electrical energy supply
10.3 Power Quality (Harmonic transformation, Tension dips, Flicker)10.4 Electricity meters

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Power Systems: Exercises and Laboratory Sessions (B-KUL-H04A1a)

0.59 ECTS : Practical 10 First termFirst term

Content

Company visit - See the contents of the lecture.

During the company visit, the students will learn more about the practical implementation of power system technology.

The company visit is compulsory. Students who do not attend the visit cannot pass the course.

Evaluatieactiviteiten

Evaluation: Power Systems (B-KUL-H24A0a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : None

ECTS Power Electronics (B-KUL-H04A2A)

3 ECTS English 28 First termFirst term

Aims

Principles of power-electronic components.
Insight into the functioning, basic design and usage of power-electronic convertors.Knowledge on the most important applications of power electronics. 

Previous knowledge

The student is supposed to know the classic electronic components, as well as the basic principles of electrical machines and electrical grids. 

Identical courses

H00P8A: Vermogenelektronica

Is included in these courses of study

Onderwijsleeractiviteiten

Power Electronics: Lecture (B-KUL-H04A2a)

2.41 ECTS : Lecture 18 First termFirst term

Content

Overview of the most important components for power applications, with the emphasis on their characteristics and applications: diode, mosfet, IGBT, thyristor, GTO, IGCT, SiC/GaN components. Next to this, the specific passive components (R/L/C) will be discussed.
Topology, functioning principle, usage limitations and basic design of the following basic circuits:
- AC-DC: rectifiers, passive as well as active, and for one or more quadrants
- DC-DC: clippers in one or more quandrants, switched capacitor circuits
- DC-AC: invertors that work on the basis of modulation techniques
- AC-AC: cycloconvertor, matrix convertor
Combined system such as circuited and linear supplies, frequency-transformers, DC/DC with integrated bridge a.o. will be explained afterwards on the basis of these basic topologies.
Multilevel and multiphase supplies for high power or high frequency use will be discussed.
Low power applications that are often realized in integrated form (chip) will also be dealt with.
Furthermore, attention will go to specific controlling techniques in power electronics and EMC/power quality aspects. This, among other things, includes modulation techniques (PWM, SVM).The lectures will be illustrated with applications from the management of electrical grids, energy conversion (e.g. solar cell converter), the improvement of power quality, electroheat and the drive of electrical machines in, among other things, transport (e.g. trains and cars) and robotics.

Course material

Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

- course notes
- N.Mohan, T.Undeland, W.Robbins: Power Electronics (Converters, Applications, and Design)- Second Edition (1995)

Power Electronics: Exercises and Laboratory Sessions (B-KUL-H04A3a)

0.59 ECTS : Practical 10 First termFirst term

Content

See the contents of the lecture. 

Evaluatieactiviteiten

Evaluation: Power Electronics (B-KUL-H24A2a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material

Explanation

Written exam (open book). The questions will determine whether the theory can be elaborated, whether a derivation can be developed independently, and whether the theory can be applied on a practical problem or application. The emphasis is on insight in the matter.

The final score is a weighted average of the result of the exam and the lab evaluations, proportional to the associated credits. The lab sessions are compulsory and are evaluated during the sessions.

Information about retaking exams

The examination form for the third examination period is identical to that of the first examination period. A retake of the labs for the second evaluation period is not possible.

ECTS Electrical Drives; Advanced Topics in Electrical Machines, including Implementation Aspects (B-KUL-H04A4A)

6 ECTS English 56 Second termSecond term
Driesen Johan (coordinator) |  Driesen Johan |  Van Hertem Dirk

Aims

Insight into the construction, functioning and use of drives, on the basis of electrical actuators, completed with power electronics, sensors and regulations. This course is intended for system-integrating engineers who will have to use these drives in global systems. In the additional part, we will look deeper into advanced types of electrical machines (actuators/generators). Finally, practical aspects connected to the concrete implementation of electrical drives will also be discussed.

Understanding and solving problems related to the design and use of electrical machines, maintaining a close link with applications.

Previous knowledge

Basic concepts of system theory, notions of control theory, basic knowledge of electrical machines. 

Identical courses

H00P9A: Elektrische aandrijvingen; aanvullingen elektrische machines, m.i.v. gebruiksaspecten

Onderwijsleeractiviteiten

Electrical Drives: Lecture (B-KUL-H04A5a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Basic Concepts of control, measuring, mechanical couplings and power electronics for drives 
• Classification of electric actuators and characterization of loads 
• DC drives: stationary and transient behavior, and construction and setting of control loops (torque, speed, position control) 
• AC drives: 
o Induction Machines 
   - Scalar control: subsynchronous cascade, U / f control, field weakening 
   - Derivation and implementation field oriented (FOC) and direct torque control (DTC) 
o Synchronous machine types 
  - Synchronous machines with emphasis on permanent magnet machines with sinusoidal control 
  - Brushless DC Machine 
  - Switched-reluctance machine 
  - Stepper motors 
• Servo drives 
• Linear actuators 
• Selection of applications, in accordance with each of the machine types: electric transportation (hybrid and electric vehicles, trains), 
   electrical energy (variable-speed wind turbines), robotics 
• Implementation aspects 
o Sensors (e.g. speed) 
o Digital DSP system implementation 
o Parasitic problems including thermal management, electromagnetic compatibility, power quality, noise and vibration 
o Energetic aspects: efficiencies 
  The exercises and laboratory sessions focus on demonstrating the different drives based on real systems. Students optimize at least one type of drive starting calculations, from simulation to verification in lab.      

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Is also included in other courses

H9X30A : Electrical Drives

Electrical Drives; Advanced Topics in Electrical Machines, including Implementation Aspects: Lecture (B-KUL-H04A6a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

A) Synchronous machines: types, models, transient and subtransient behavior , short circuit, grid connection, parallel operation, behavior in island and strong networks. 
B) Small machines:
The scope of small motors today is extremely broad and includes all areas of our world. They are installed in CD players, cameras, washing machines, heating and cooling appliances, cars etc. Traditionally one makes a distinction between three classes based on power: large, medium and small power. Within these classes it is possible to make a partition based on certain special features or elements of the machines. The upper limit, where one speaks of small machines, is a mechanical power about 1000W. These machines are mainly used in drives for consumer goods. In this series of classes on small machines, the following topics are treated :
• Defining the various types of machinery and design for small electrical machines 
• Rotating field, single- and three-phase motors, auxiliary winding with R / C / L 
• Shaded-pole motor 
• Hysteresis motor 
• Permanent magnetic materials, PM motors 
• Small permanent magnet DC machines 
• Brushless DC motor 
• AC synchronous motors (permanent magnet, reluctance) 
• Switched reluctance motor 
• Universal motor 
• Stepper motor 
• Ultrasonic motor 
• Linear models
C) Efficiency aspects of electrical machines and drives

Electrical Drives: Exercises and Laboratory Sessions (B-KUL-H04A7a)

0.59 ECTS : Practical 10 Second termSecond term

Is also included in other courses

H9X30A : Electrical Drives

ElectricalDrives; Advanced Topics in Electrical Machines, including Implementation Aspects: Exercises and Laboratory Sessions (B-KUL-H04A8a)

0.59 ECTS : Practical 10 Second termSecond term

Content

See the contents of the lectures.

Evaluatieactiviteiten

Evaluation: Electrical Drives; Advanced Topics in Electrical Machines, including Implementation Aspects (B-KUL-H24A4a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material

Explanation

Theory: written. Exercises: written. Both are open book.
The lab sessions are compulsory and are evaluated during the sessions themselves and count proportionally to the number of study points. If, for reasons of force majeure, the university decides that the lab sessions cannot go ahead in their current form, they will be replaced by a virtual, quoted alternative.
This exam consists of two parts, matching both teaching activities of the course, so that students who have one of these as an optional  course in another programme can take the matching exam.

ECTS Power System Calculations (B-KUL-H04A9A)

3 ECTS English 28 First termFirst term

Aims

The student will comprehend the different basic theories and models of power system components that relate to the electric power system, and is able to derive and use them. He is able to use the basic theories and models to implement them in power flow calculations and in optimal power flow calculations (e.g. unit commitment), both on paper (for small cases) and using computer applications. The student can perform short circuit calculations, both for symmetric and asymmetric faults, using symmetrical components. The student is able to understand and explain the basic principles of dynamics in power systems based on simplified models.

Previous knowledge

The student has followed a basic course on electrical networks and electrical energy, for instance H01L8AN (http://onderwijsaanbod.kuleuven.be/syllabi/n/H01L8AN.htm). As such the student should understand single and three phase AC networks, active and reactive power, transformers, AC and DC motors and the basics of the energy supply chain.

Order of Enrolment



SIMULTANEOUS (H04A0A)


H04A0AH04A0A : Power Systems

Onderwijsleeractiviteiten

Power System Calculations: Lecture (B-KUL-H04A9a)

2.41 ECTS : Lecture 18 First termFirst term

Content

The student will comprehend the different basic theories and models of power system components that relate to the electric power system, and is able to derive and use them. He is able to use the basic theories and models to implement them in power flow calculations and in optimal power flow calculations (e.g. unit commitment), both on paper (for small cases) and using computer applications. The student can perform short circuit calculations, both for symmetric and asymmetric faults, using symmetrical components. The student is able to understand and explain the basic principles of dynamics in power systems based on simplified models.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Course material: slides, and additional reference material:

  • Power System Analysis; John Grainger, William Stevenson Jr.
  • Power Systems Analysis and Design; J. Duncan Glover, Mulukutla S. Sarma, Thomas Overbye

Power System Calculations: Exercises and Practica (B-KUL-H04B0a)

0.59 ECTS : Practical 10 First termFirst term

Content

Exercises and Practica:

  • per unit calculations, grid parameters
  • short circuit calculations
  • power flow calculations

Course material

Course material: slides, and additional reference material:
• Power System Analysis; John Grainger, William Stevenson Jr.
• Power Systems Analysis and Design; J. Duncan Glover, Mulukutla S. Sarma, Thomas Overbye

Format: more information

3 Exercise sessions discussing the different aspects of the course

1 lab session (tentative)

Evaluatieactiviteiten

Evaluation: Power System Calculations (B-KUL-H24A9a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions, Closed questions
Learning material : List of formulas, Calculator

Explanation

The exam consists out of two parts: an oral examination (20%) and a written part (two exercises, 80%).

The students are expected to acquire  synthetic understanding of the topics covered in the lectures. Arguing from the electrical theory is more important than memorizing information.

The exercise exam comprises out of 2 exercises.

ECTS Electromagnetic Processing of Materials (B-KUL-H04B1A)

3 ECTS English 28 Second termSecond term

Aims

To reason as an engineer in an innovating way on the creation of industrial added value by applying an interaction of electromagnetic energy (of all frequencies) with materials (of all kind), taking into account technological, economical, ecological and ergonomic boundary conditions.

After a succesfull study of the course, the student will be able to:

  • explain the electromagnetic interaction with material in terms of the underlying physical principles
  • sufficiently understand the technology so that an assessment can be formulated concerning its electrical efficiciency
  • articulate the advantages and disadvantages of an electrical technique in a particular industrial thermal process

Previous knowledge

This is an introductory course on master level and there are no specific pre-requisites. The general knowledge acquired in the bachelor courses is sufficient. At the occasion of the first lecture those students who want to do so, can specify their previous studies as well as their specific points of interest, so that their situation can be taken into account for the subsequent lectures.

Is included in these courses of study

Onderwijsleeractiviteiten

Electromagnetic Processing of Materials: Lecture (B-KUL-H04B1a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

0. INTRODUCTION

     1. Electricity, heat, quality of energy
     2. Specific advantages of electrothermal applications
     3. Models for Heat transfer
               3.1. Conduction (Fourier)
               3.2. Convection (Navier-Stokes)
               3.3. Radiation (Planck, Stefan-Boltzmann, Wien)
     4. Energy efficiency

 

1. RESISTANCE HEATING

     A) Direct resistance heating

          1. Principle and limitations
          2. Industrial applications


     B) Indirect resistance heating

          1. Types of furnaces
          2. Heating elements (types, characteristics, atmospheric influence)
          3. Construction of an indirect resistance heating furnace

 

2. INFRARED HEATING


     1. Subdivision of the spectrum
     2. Long-wave infrared emitters
     3. Middle-wave infrared emitters
     4. Short-wave infrared emitters
     5. Temperature regulation
     6. Industrial applications
     7. Optimizing energy efficiency of infrared heating

 

3. INDUCTION HEATING


     1. Principle and characteristics of induction heating
     2. Technology of induction installations
     3. Crucible furnace
     4. Channel furnace
     5. Levitation melting
     6. Surface heating (frequency choice, power supply)
     7.Industrial applications (thin plates, thermal surface treatments, ...)
     8. Transverse flux heating (principle and industrial applications)
     9. Induction heating in static magnetic field
     10. Actual research on innovative induction heating applications (electromagnetic casting,
           magnetohydrodynamics, cold crucible melting, skull melting, production of monocrystalline silicon,
           Taylor-Ulitovsky process, induction hardening of complex profiles, medical applications, inductive vitrification of nuclear waste,  ...)

 

 4. DIELECTRIC HEATING


A) High frequency (or radiofrequency) heating
  1. Dielectric hysteresis
  2. Dielectric parameters
  3. Transmission line theory and Smith chart
  4. 50 ƒÇ modular technique
  5. Industrial applications
  6. Specific Absorption Rate and Safety issues


B) Microwave heating
  1. Dielectric hysteresis
  2. Dielectric parameters
  3. Multimode and monomode systems
  4. Waveguides
  5. Working principle of the magnetron
  6. Microwave sintering of ceramics and the “Non-thermal microwave effect”
  7. Microwave sintering of metal powder
  7. Industrial applications
  8. Safety issues
  9. Microwave at high frequency: on the edge of heat theory

 

5. ELECTRIC ARC FURNACES


A) AC arc furnace
  1. Physics of the AC arc (arc deflection and noise)
  2. AC arc furnace and the environment
  3. Equivalent circuit diagram of AC-furnaces
  4. Circle diagram of AC-furnaces
  5. Short-circuit reactance and operating reactance
  6. AC arc furnace and the problem of flicker


B) DC arc furnace
  1. Physics of the DC arc (arc deflection and noise)
  2. Power diagram of the DC arc furnace
  3. Bath movement
  4. DC arc furnace and the problem of harmonics

 

 

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Handouts slides + texts: on Toledo

Electromagnetic Processing of Materials: Exercises and Laboratory Sessions (B-KUL-H04B2a)

0.59 ECTS : Lecture 10 Second termSecond term

Content

After the Eastern holidays, students bring in an interactive classroom session a short presentation of an already published research paper. A list of eligible research papers will be available on Toledo. Participation at the interactive classroom sessions is mandatory and will be checked.

Course material

Eligible research papers will be available on Toledo.

Evaluatieactiviteiten

Evaluation: Electromagnetic Processing of Materials (B-KUL-H24B1a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Presentation
Type of questions : Open questions
Learning material : Course material

Explanation

Before the 15th of May, students bring in an interactive classroom session a presentation of an already published research paper. A list of eligible research papers will be available on Toledo. 

The exam is oral.  For the preparation all written material is permitted. The exam will count for 17/20 of the final grade.

Information about retaking exams

Students who did not submit a powerpoint document before the 15th of May, have to submit it no later than a week before the date of the exam.  Students who already submitted a powerpoint document before the 15th of May don't need to resubmit a powerpoint document. The marks, counting for 3/20 of the final grade and acquired the first time, will be kept; and the exam will count for 17/20 of the final grade.

ECTS Engels in de bedrijfsomgeving (B-KUL-H04B3A)

3 studiepunten Engels 39 Beide semestersBeide semesters Uitgesloten voor examencontract
Laffut An |  De Geest Annelien (medewerker)

Doelstellingen

Deze cursus heeft als doel om studenten voor te bereiden om op een adequate en professionele manier te communiceren in een Engelstalige bedrijfsomgeving. De cursus focust op een aantal belangrijke communicatieve vaardigheden (zowel schriftelijk als mondeling), maar heeft ook aandacht voor het professionaliseren van woordenschat en grammatica. De cursus wordt verzorgd door mevr. Annelien De Geest.

Begintermen

De voorkennis die van de studenten wordt verwacht, is die van het vak Engels op het einde van het secundair onderwijs (niveau B1 van het Europees Referentiekader).
Concrete informatie : zie taalopleidingsonderdelen

  • Aan het begin van het academiejaar nemen de studenten deel aan een verplichte diagnostische taaltest. De studenten dienen zich hiervoor in te schrijven via de tool op bovenstaande webpagina. Alle praktische informatie over de test (datum / plaats) kan ook daar gevonden worden.
  • Studenten wonen de lessen 1 keer per week bij, gedurende beide semesters. Studenten geven bij registratie aan wanneer ze beschikbaar zijn en krijgen bevestiging van hun keuzes na de test.
  • Het resultaat van de test wordt opgevat als didactische informatie zowel voor de student als voor de taaldocent. In het uitzonderlijke geval dat er te veel vraag is voor de taalcursus of het cursusniveau ongeschikt is, heeft het testresultaat een beslissende impact.
  • Voor studenten die toelating hebben om twee talen te volgen: de diagnostische test is verplicht voor Engels H04B3A en Frans H04B4A.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Engels in de bedrijfsomgeving (B-KUL-H04B3a)

3 studiepunten : College 39 Beide semestersBeide semesters
Laffut An |  De Geest Annelien (medewerker)

Inhoud

De cursus bestaat uit een aantal modules:

  • Professionele schriftelijke communicatie, o.a. e-mails, rapporten en sollicitaties
  • Beschrijven van grafieken, duiden van trends en processen
  • Presentatietechnieken
  • Vergaderingen in het Engels leiden en bijwonen
  • Opfrissen en remediëren van grammatica
  • Uitbreiden van professionele woordenschat (business vocabulary)

Studiemateriaal

Studiekost: 26-50 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Verplicht studiemateriaal:

  • Business Vocabulary in Use - Advanced (3rd edition, 2017) door Bill Mascull (Cambridge University Press)
  • Course Notes: English for Professional Purposes door Annelien De Geest (syllabus)

Toelichting werkvorm

Interactieve communicatieve aanpak die leidt tot dieper taalinzicht. Dit veronderstelt dat de studenten thuis een aantal activiteiten voorbereiden zodat de contacturen grotendeels aan de mondelinge en schriftelijke communicatie kunnen worden besteed.

Evaluatieactiviteiten

Evaluatie: Engels in de bedrijfsomgeving (B-KUL-H24B3a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode

Toelichting

Permanente evaluatie (mondeling en schriftelijk) van de activiteiten in de loop van het jaar. Het gaat voornamelijk om vaardigheidsevaluatie en gedeeltelijk ook om kennisevaluatie (woordenschat, grammatica, basisprincipes).

Het resultaat wordt berekend en uitgedrukt met een geheel getal op 20. Het examenresultaat is een gewogen cijfer dat als volgt wordt bepaald:

Woordenschat en grammaticatest (25%) - tijdens de lesuren 

Schriftelijke vaardigheden (30%)

  • Rapport (proposal): 15%
  • CV en sollicitatiebrief: 15%

Mondelinge vaardigheden (45%)

  • Zakelijke meetings (incl. schriftelijke component): 35%
  • Presentatievaardigheden: 10%

Indien de student niet deelneemt aan één (of meerdere) van de deelevaluaties op het vooraf vastgestelde tijdstip dat gepubliceerd wordt op Toledo, wordt de beoordeling van de niet afgelegde deelevaluatie(s) meegeteld als een 0-score binnen het gewogen eindresultaat. De student kan enkel uitstel krijgen als hij omwille van ziekte/overmacht afwezig is en een doktersattest kan voorleggen.

Toelichting bij herkansen

De evaluatiekenmerken en bepaling eindresultaat van de tweede examenkans zijn niet identiek aan die van de eerste examenkans. Wegens de aard van de mondelinge taken (zie toelichting eerste examenkans) worden de behaalde resultaten voor het onderdeel 'zakelijke meetings'  bij de eerste examenkans overgedragen naar de tweede examenkans. Deze component kan dus niet opnieuw afgelegd worden en telt mee voor 35% van het examenresultaat.

Woordenschat en grammatica test (25%)  

Schriftelijke vaardigheden (30%)

  • Rapport (proposal): 15%
  • CV en sollicitatiebrief: 15%

Mondelinge vaardigheden (45%)

  • Zakelijke meetings (incl. schriftelijke component): 35%  => voor deze component worden de behaalde resultaten van de eerste examenkans overgedragen naar de tweede examenkans
  • Presentatievaardigheden: 10%

ECTS Frans in de bedrijfsomgeving (B-KUL-H04B4A)

3 studiepunten Frans 39 Beide semestersBeide semesters Uitgesloten voor examencontract
Bertels Ann |  Busson Béatrice (medewerker)

Doelstellingen

  • De student kan zich op een correcte manier uitdrukken (taalkundige vervolmaking) in de vreemde taal.
  • De student kan op een adequate manier in het Frans functioneren.
  • De student verwerft een aantal communicatieve vaardigheden.
  • De student kan vlot en efficiënt communiceren in de technische bedrijfswereld.

Begintermen

Goede kennis van het algemeen Frans na het beëindigen van de humaniora (800 à 1200u).
Bij het begin van het academiejaar wordt er een diagnostische test Frans georganiseerd.
Concrete informatie : zie taalopleidingsonderdelen
https://eng.kuleuven.be/studeren/opleidingen/taalopleidingsonderdelen 
De studenten dienen zich voor deze diagnostische niveautest in te schrijven, via de tool op bovenstaande webpagina.
Voor Engels en Frans is een diagnostische niveautest verplicht. Deze test is gebaseerd op de basiskennis van Engels en Frans uit het secundaire onderwijs, die het vertrekpunt vormt van de taalcursussen en niet het doel. Het resultaat van de test wordt opgevat als didactische informatie zowel voor de student als voor de taaldocent. Maar in het uitzonderlijke geval dat er te veel vraag is voor de taalcursus (meer dan 40 studenten voor de 2 groepen of meer dan 60 studenten voor de 3 groepen), of in het geval dat het cursusniveau totaal ongeschikt is voor de student, dan heeft het resultaat op de niveautest toch een beslissende impact.

Het aantal studenten per groepje is beperkt tot een 20-tal, om wille van de interactieve en communicatieve aanpak. Franstalige studenten kunnen deze taalcursus Frans niet volgen, omdat het in de eerste plaats om taalbeheersing gaat.
De studenten wonen de colleges 1x per week bij, in één van de drie groepen en dit zowel tijdens het 1e als het 2e semester.

- Datum en plaats van de diagnostische test :

PC-lokalen Dekenstraat Leuven (lokalen worden later bekend gemaakt).

- Beschrijving :

elektronische test meerkeuzevragen : basiswoordenschat en -grammatica, begrijpend lezen en uitspraak

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Frans in de bedrijfsomgeving (B-KUL-H04B4a)

3 studiepunten : Opdracht 39 Beide semestersBeide semesters
Bertels Ann |  Busson Béatrice (medewerker)

Inhoud

De cursus betaat uit een aantal modules:

  • Linguïstische opfrissings- en remediëringsmodule
  • Communicatieve basisvaardigheden: kwantitatieve en kwalitatieve gegevens uitdrukken in het Frans (cijfers manipuleren, grafieken, enz.)
  • Interne en externe bedrijfscommunicatie: sociale contacten, onthaal van klanten, partners, buitenlandse bezoekers, leveranciers, ... evaluatie en instructies
  • Telefoongesprekken (informatieve en persuasieve)
  • Onderhandelingsgesprek (project, opdracht, contract)
  • Presentatietechnieken en praktische toepassingen
  • Vergaderen in het Frans
  • Schriftelijke communicatie: brief, memo, e-mail, rapportering, verslag, ...
  • Solliciteren in het Frans

Studiemateriaal

Studiekost: 1-10 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Verplicht studiemateriaal: syllabus taaldocent (te verkrijgen op de cursusdient ILT).
Aangeraden studiemateriaal diagnostische test: basisgrammatica en basiswoordenschat (handboeken middelbaar onderwijs, ook verkrijgbaar in de handel).

Toelichting onderwijstaal

De colleges worden in het Frans verzorgd. Dit neemt niet weg dat een aantal taalproblemen contrastief benaderd worden met behulp van het Nederlands.

Toelichting werkvorm

Functionele, multimediale, communicatieve, participatieve en responsabilizerende aanpak.

Dit veronderstelt dat de studenten thuis een aantal activiteiten voorbereiden zodat de contacturen grotendeels aan de mondelinge en schriftelijke communicatie kunnen worden besteed.

Evaluatieactiviteiten

Evaluatie: Frans in de bedrijfsomgeving (B-KUL-H24B4a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Paper/Werkstuk, Verslag, Presentatie, Vaardigheidstoets
Vraagvormen : Open vragen
Leermateriaal : Cursusmateriaal

Toelichting

Permanente evaluatie (mondeling en schriftelijk) van de activiteiten in de loop van het jaar. Het gaat voornamelijk om vaardigheidsevaluatie, gedeeltelijk ook om kennisevaluatie (taal, basisprincipes).

Bepaling examenresultaat 
Het examen wordt beoordeeld door de docent, zoals meegedeeld via Toledo en de examenregeling. Het resultaat wordt berekend en uitgedrukt met een geheel getal op 20. 
Het examenresultaat is een gewogen cijfer dat als volgt wordt bepaald:
Er zijn in totaal 10 proeven die op 20 of op 40 worden gekwoteerd. Het gemiddelde van de schriftelijke taken vertegenwoordigt 8 van de 20 punten en het gemiddelde van de mondelinge proeven vertegenwoordigt 12 van de 20 punten. 

Indien de student niet deelneemt aan één (of meerdere) van de deelevaluaties op het vooraf vastgestelde tijdstip dat gepubliceerd wordt op Toledo, wordt de beoordeling van de niet afgelegde deelevaluatie(s) meegeteld als een 0-score binnen het gewogen eindresultaat. De student kan enkel uitstel krijgen als hij omwille van ziekte afwezig is en een doktersattest kan voorleggen.

- schriftelijke proeven (8/20) :

  • zakelijke brief  (op 20)
  • grafiekbeschrijving (op 20)
  • rapport of verslag (op 20)
  • sollicitatiebrief en CV (op 20)
  • schriftelijke documenten van de bedrijfspresentatie (op 40)


- mondelinge proeven (12/20) :

  • telefoongesprek (op 20)
  • uitleg werking toestel OF onderhandelingsgesprek (op 20)
  • vergadering (op 20)
  • sollicitatiegesprek (op 20)
  • bedrijfspresentatie (op 40)

 

Toelichting bij herkansen

Er zijn drie grote onderdelen, die slechts gedeeltelijk overeenkomen met de proeven van de eerste examenkans.
- 12/20 : mondelinge proeven : presentatie van een persdossier (op voorhand maken) + telefoon- of onderhandelingsgesprek
- 8/20 : schriftelijke proeven : documenten persdossier + schriftelijke communicatie (zakelijke brief, e-mail, diensnota)
(Details : zie cursustekst).

ECTS Renewable Energy (B-KUL-H04C1B)

6 ECTS English 52 Second termSecond term

Aims

Giving the students a proper understanding of and thorough insight into all important aspects of renewable energy 'production', which will also be placed in the context of the overall energy issue.

Previous knowledge

Basic knowledge of physics and energy conversion machines (thermo-mechanical and electrical). 

Identical courses

H00S7A: Hernieuwbare energie

Is included in these courses of study

Onderwijsleeractiviteiten

Renewable Energy (B-KUL-H04C1a)

6 ECTS : Lecture 52 Second termSecond term

Content

Introduction & Setting the stage  
Solar Energy
- Photovoltaic energy conversion (PV)
- Solar thermal (solar boilers)  
- Concentrated Solar Power (CSP)
Wind energy   
Bio energy
- Solid biomass (electricity & heat)
- Biofuels (liquid – transport) 
Geothermal energy   
Hydro, wave- & tidal energy (blue power)
Energy storage
- Electrical storage  
- Thermal storage  
Hydrogen & fuel cells  
Can be extended with seminar and/or visit

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Text book
Articles and literature
Slides, transparencies, courseware
Toledo / e-platform

Evaluatieactiviteiten

Evaluation: Renewable Energy (B-KUL-H24C1b)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Multiple choice, Open questions, Closed questions
Learning material : Calculator

Explanation

Exam is written, closed book. Some questions may possibly include multiple-choice parts - in that case, correction for guessing will be applied for these parts.

 

ECTS Energy Economics (B-KUL-H04C4A)

3 ECTS English 20 Second termSecond term
Ooghe Erwin |  Morbée Joris (substitute)

Aims

This course aims to provide an understanding of the economic aspects of energy, while introducing or refreshing microeconomic concepts that can be of wider use.

It will help you to:
1. Understand and assess events on global energy markets
2. Make, or contribute to, business and policy decisions related to energy
3. Work as an engineer in multidisciplinary teams that involve economists

Previous knowledge

- Knowledge of basic microeconomics (market balance, supply and demand curves, perfect competition and monopoly, discounted cash flow analysis)
- Knowledge of calculus and mathematical optimisation

Is included in these courses of study

Onderwijsleeractiviteiten

Energy Economics (B-KUL-H04C4a)

3 ECTS : Lecture 20 Second termSecond term
Ooghe Erwin |  Morbée Joris (substitute)

Content

1. Introduction to environmental and resource economics
2. Economics of sustainability, climate change and international energy policy
3. Characteristics and modelling of primary energy markets (oil, natural gas, coal)
4. Economic aspects of electricity markets with and without renewable energy

Course material

Study cost: 26-50 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Core resources:
- Textbook "Energy Economics", Edition 2019, by Pepermans / Morbee / Ovaere / Proost
- Slides used for the lectures

Additional resources:
- Papers from scientific literature
- Statistics
- Background material from previous editions of the course
- Microeconomics textbook (for those without a sufficient background in economics)

Evaluatieactiviteiten

Evaluation: Energy Economics (B-KUL-H24C4a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, List of formulas, Calculator

Explanation

Open-book, written exam, in which students are requested to solve novel economic problems/questions related to the course material

ECTS Design and Management of Electric Power Systems (B-KUL-H04C6A)

6 ECTS English 56 First termFirst term

Aims

During this course, the student will learn the different aspects of power systems: from the development of electrical energy systems (long term planning) up to real time operation. The first part of the course focuses on the modeling and simulation of modern power systems. This includes the dynamic modeling of power components and their controls. The models are used to study the different aspects of power system stability. The second part of the course is centered on a selection of practical problems associated with power systems. In this part, the student will learn the development of transmission systems, power frequency regulation and voltage regulation in circuited networks, reliability in power system operations, power quality, asset management and the use of renewables and controllable devices such as HVDC and FACTS in the system.
The course will be taught by Dirk Van Hertem and Markus Berger, as well as by a number of experts from industry.

Previous knowledge

The student has had an introductory course on production, transport and distribution of electrical energy (such as 'H04A0A Power systems') and a basic course on power system analysis (such as H04A9A 'Power System Calculations').

Order of Enrolment



SIMULTANEOUS (H04A0A)


H04A0AH04A0A : Power Systems


Is included in these courses of study

Onderwijsleeractiviteiten

Design and Management of Electric Power Systems: Lecture (B-KUL-H04C6a)

4.82 ECTS : Lecture 36 First termFirst term

Content

Table of contents:

  • power flow applications (PTDF, LODF, OPF, power system reduction,state estimation, stochastic load flow…)
  • Dynamic modeling of components: generators
  • Modeling of classic power plants (governers, AVR)
  • Power system dynamics (small signal, transient and voltage stability)
  • Power system dynamics (frequency stability - load balance)
  • New elements in the power system: HVDC, FACTS and renewables: modeling, simulation and applications
  • Reliability in Power systems (N-1, N-k, stochastic approach to power system reliability, interaction of reliability in the different time frames)
  • Power quality (phenomena and solutions)
  • Grid development
  • Asset Management
  • Transients

Course material

Course Material:

  • Course material (slides) placed on toledo

Additional reading:

  • Power system stability and control, Prabha Kundur, McGraw-Hill, 1994
  • Electric Energy Systems: Analysis and Operation, Antonio Gomez-Exposito, Antonio Conejo, Claudio Canizares, CRC Press, 2008
  • Grainger J.,Stevenson, Power System Analysis, McGraw Hill, 1994

Design and Management of Electric Power Systems: Exercises and Laboratory Sessions (B-KUL-H04C7a)

1.18 ECTS : Assignment 20 First termFirst term

Content

A number of smaller exercise and lab sessions, together with a larger project assignment.

Course material

The course text next to, possibly, provided assignments. 

Format: more information

Group assignment which involves solving a (near) realistic problem.

Evaluatieactiviteiten

Evaluation: Design and Management of Electric Power Systems (B-KUL-H24C6a)

Type : Exam during the examination period
Description of evaluation : Oral, Practical exam
Type of questions : Open questions
Learning material : Course material

Explanation

The exam consists of two parts:  

An oral exam with written preparation (open book) and a report (group work) on a practical case which needs to be defended for a small jury (defended in group).

Information about retaking exams

The second examination will have the same form for the oral examination of the theory.

The task/report part of the examination will be retained, but possibly under a different form (such as individual report for a smaller task).

ECTS Electromobility (B-KUL-H04C8A)

3 ECTS English 28 First termFirst term
Driesen Johan (coordinator) |  De Gussemé Koen |  Driesen Johan

Aims

First part:
Understanding and solving problems that occur in the use of AC machines. The emphasis will be on induction machines. Synchronous machines will be dealt with specifically where necessary.
 
Second part:
Understanding the structure, operation and use of transport means acting on the basis of electric energy conversion, with particular attention to energy issues.  

Previous knowledge

Control theory and basic elements of electrical machines and drives.
Basic knowledge to be able to calculate electrical and magnetic circuits.
Basic knowledge of the use of Matlab/SIMULINK (C). 

Order of Enrolment



SIMULTANEOUS (H04A4A) OR SIMULTANEOUS (H04A4B) OR SIMULTANEOUS(H00P9A)


H04A4AH04A4A : Electrical Drives; Advanced Topics in Electrical Machines, including Implementation Aspects
H04A4BH04A4B : Electrical Drives; Energy Efficiency of Electrical Machines
H00P9AH00P9A : Elektrische aandrijvingen; aanvullingen elektrische machines, m.i.v. gebruiksaspecten

Is included in these courses of study

Onderwijsleeractiviteiten

Electromobility: Lecture (B-KUL-H04C8a)

2.41 ECTS : Lecture 18 First termFirst term

Content

First Part:
Harmonics
- Harmonics of the winding construction
- Influence of saturation
- Influence of eccentricity
- Influence of non-cylindrical rotor or stator
- Influence of grooves
- Harmonics in converter supplies
Losses
- Loss components
- Supplementary losses
- Losses in converter supplies
- Determining efficiency
Vibrations
- Torsion vibrations in stationary behavior
- Torsion vibrations during transition phenomena
- Radial vibrations. Balancing out. Critical rpm.
- Impact of convertor supplies
Sound
- Mechanical sound
- Sound caused by harmonizing
- Sound in convertor supplies
Problems in convertor supplies
- Mains pollution
- EMC and overvoltages
- Bearing damage.
 
Second part:
- Technology introduction including energy for transportation
- Electrical and hybrid vehicles
- Grid interaction of charging plug-in vehicles
- Electricity aboard cars and trucks
- Heavy rail, including high speed trains
- Light rail & people movers (Urban transport)- Electric ships 

Electromobility: Exercises and Laboratory Sessions (B-KUL-H04C9a)

0.59 ECTS : Practical 10 First termFirst term

Content

Laboratory sessions on advanced aspects of electrical machines and drives.
Visit or demonstration of electric transportation.

Evaluatieactiviteiten

Evaluation: Electromobility (B-KUL-H24C8a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Paper/Project
Type of questions : Open questions
Learning material : Course material

Explanation

The evaluation consists of an individual written review and discussion of one or more scientific papers in the domain of the course. The task is given towards the end of the classes; the review is handed in at the start of the exam period.

ECTS Industrial Automation and Control (B-KUL-H04D0A)

6 ECTS English 56 First termFirst term

Aims

Students understand systems used for industrial control and automation.

They can design and evaluate feedback control systems, in the time domain (via root loci), in the frequency domain, and in the state space.

They can explain and apply the concepts related to dependability; the know the basic fault tolerance architectures and can make a motivated choice for a particular application, with specific focus on functional safety and information security.

The students have mastered several methods to determine dependability in a quantitative manner (reliability block diagrams, markov chains, analytical methods). 

In addition, they can position trends in research and development  within the domain.

Previous knowledge

Knowledge at bachelor level of system theory and control theory, including the mathematical techniques.

Basic knowledge of a program such as Matlab.

Is included in these courses of study

Onderwijsleeractiviteiten

Industrial Automation and Control: Lecture (B-KUL-H04D0a)

4.82 ECTS : Lecture 36 First termFirst term

Content

Part 1 feedback control of dynamic systems

  • Dynamic models, response and feedback
  • Root locus design method 
  • Frequency-response design method
  • State space design
  • Digital control
  • Nonlinear systems
  • Control system design: principles and applications

 Part 2: dependable control and automation 

  • Dependability: concepts & terminology 
  • Architectures for dependable systems 
  • Quantitative assessment of dependability 
  • Functional safety of digital systems 
  • Information security 
  • Case studies

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

G.F.Franklin, J.D.Powell, A.Emami-Naeini, "Feedback Control of Dynamic Systems (8th ed.),"  Upper Saddle River, NJ: Pearson Education, 2020, ISBN: 9781292274522

Course material available at  VTK (hand-outs & texts)

Industrial Automation and Control: Exercises and Laboratory Sessions (B-KUL-H04D1a)

1.18 ECTS : Practical 20 First termFirst term

Content

4 sessions about control

  • control system design in the frequency domain
  • state-space design
  • discrete (digital) design 
  • non-linear systems

 
4 sessions around robust automation

  • (double session) debugging an industrial control system
  • reliability block diagrams
  • Markov analysis for reliability and others

Course material

Exercises;  hands-on session in a university college

Evaluatieactiviteiten

Evaluation: Industrial Automation and Control (B-KUL-H24D0a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Calculator

Explanation

Oral exam, with questions on the theory, and exercises.

 

Information about retaking exams

Retake exams follow the same procedure as the inital ones.

ECTS Measurement and Testing, including High Voltages (B-KUL-H04D2A)

3 ECTS English 28 Second termSecond term
Deconinck Geert (coordinator) |  De Rybel Tom |  Deconinck Geert

Aims

The students are able to explain the working principles of analog measuring instruments and digital measuring systems, mainly in the domain of electric power systems at low voltage and mains frequency. 

They are able to make a motivated selection of suitable measurement solutions for a particular application.

They understand and are able to explain how to generate high voltages (ac, dc and impulse) and how to measure these, for high-voltage testing applications and the non-destructive evaluation of isolation qualities of materials. 

They are able to make a motivated selection of a suitable test suite for a particular application.

Previous knowledge

The student has knowledge of electrotechnology at the initial phase of the master level. 

Is included in these courses of study

Onderwijsleeractiviteiten

Measurement and Testing, including High Voltages: Lecture (B-KUL-H04D2a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Part 1: electrical measurement techniques

  • Basic aspects of measurement techniques
  • Measurement methods, uncertainty, standards
  • Classical measuring instruments, oscilloscopes, 
  • Digital measuring instruments and computer measurement systems

 
Part 2: high voltage engineering and testing

  • Generating high voltages: direct current, alternating current, pulses
  • Measuring high voltages: sparc gaps, electrostatic, 
  • Voltage dividers, methods
  • Non-destructive isolation testing , partial dischargesOver voltages, lightning, test methods, isolation coordination

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

  •  ST: Slawomir Tumanski, Principles of Electrical Measurement (Sensors Series.), CRC press, 2006
  •  KZK: Kuffel, Zaengl, Kuffel, High Voltage Engineering Fundamentals 2nd Edition, Elsevier 2000. 
  • hand-outs

Format: more information

Traditional lecture

Measurement and Testing, including High Voltages: Exercises and Practica (B-KUL-H04D3a)

0.59 ECTS : Practical 10 Second termSecond term

Content

seminar by external speaker
lab sessions high voltage engineering (partial discharge testing, generating and measuring high ac, dc and impulse voltages)

Course material

lab texts

Format: more information

Guest lecture - Laboratory session

Evaluatieactiviteiten

Evaluation: Measurement and Testing, including High Voltages (B-KUL-H24D2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Calculator

Explanation

Oral, open book exam, with questions from both parts of the course.

The evaluation consists of a written preparation and an oral discussion of the answers to the questions

 

ECTS Light and Lighting Systems (B-KUL-H04D4A)

3 ECTS English 28 Second termSecond term

Aims

The students have obtained insight in the fundamentals of light, vision and colour.

They understand and can explain the different technologies related to lamps, gears and drivers, luminaires and smart lighting, with a focus on solid-state lighting techniques.

The students have a decent understanding of the indoor lighting applications related to lighting quality and standards, design and calculations and measurements.

Previous knowledge

Physics of light. Basic electrotechnical knowledge. Both at the level of an academic bachelor in engineering science.

Is included in these courses of study

Onderwijsleeractiviteiten

Light and Lighting Systems: Lecture (B-KUL-H04D4a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Fundamentals

  • Visual Mechanism
  • Colour
  • Visual Performance
  • Visual Satisfaction
  • Hazardous Effects

Technology

  • Lamps, Gear and Drivers
  • Daylight
  • Luminaires
  • Connected Smart Lighting
  • Light Beyond Illumination

Application

  • Lighting Quality and Standards
  • Design Aspects
  • Calculations and Measurements

Course material

Wout van Bommel, “Interior Lighting - Fundamentals, Technology and Application”, Springer Cham, 2019

  • https://doi.org/10.1007/978-3-030-17195-7  

Handouts on Toledo.

Format: more information

Traditional lecture

Light and Lighting Systems: Exercises and Laboratory Sessions (B-KUL-H04D5a)

0.59 ECTS : Practical 10 Second termSecond term

Content

Laboratory session at light and lighting laboratory KU Leuven, technologiecampus Gent.

Exercise session: software based indoor lighting calculations

Course material

Lab texts

Format: more information

Computer session - Laboratory session - Project work

Evaluatieactiviteiten

Evaluation: Light and Lighting Systems (B-KUL-H24D4a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Calculator

Explanation

Open book exam. Questions from all parts of the course.

Oral defence, written preparation

 

ECTS Materials in Electrical Engineering (B-KUL-H04D6A)

3 ECTS English 28 Second termSecond term

Aims

The student acquires a thorough knowledge of the materials that are enabling for the components needed for building up the Smart Grid of the future.  It is obviously not possible to treat all material subjects covering generation to storage.  Therefore the following subjects will be dealt with in detail after a thorough introduction on metals and semiconductors: materials for solar cells (generation aspect), materials for power devices (control of power), materials for transmission of electrical power (e.g. superconductors, transparent conductors) and, last but not least materials for electrochemical storage (batteries, fuel cells).  

This is always organized according to the following basic scheme
• Physical basis of the relevant material properties
• An overview of the relevant materials
• New materials development

The impact of  nanotechnology on  electrical power generation, control and storage is also touched upon in the course

Previous knowledge

General electrotechnology, elementary chemistry and materials engineering. 

Is included in these courses of study

Onderwijsleeractiviteiten

Materials in Electrical Engineering: Lecture (B-KUL-H04D6a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Approach: The introduction focuses on the physical background of the relevant material properties. Then the course zooms  in on the materials and material trends , from power generation and  electrical power control to electric energy storage and utilization of electrical energy in some applications. It is clear that this is not exhaustive, but it has the objective to illustrate how certain effects  discussed in the introduction can be realized through material choice. Simultaneously the advantages and disadvantages of the different materials are illustrated. Students must also understand the trends of materials research for electrical applications. It is  demonstrated that the concept of nanotechnology has impact on the electric power sector. 
 
Table of Contents: 
  
1. Economic relevance of the materials sector for electrical applications: 
1.1 In the world 
1.2 In Flanders 
  
  
2. Physical basis of electrical conduction 
    2.1 Electronic conduction    

       2.1.1  Electrical conductivity in metals
          2.1.1.1 Conduction in pure monocrystalline crystal metals 
          2.1.1.2 Conduction in pure polycrystalline metals: effect of crystallographic imperfections 
          2.1.1.3 Conduction in metal alloys 
       2.1.2  Transparent conductors 
       2.1.3  Semiconductors 
         2.1.3.1 Intrinsic conduction properties 
         2.1.3.2 Extrinsic conduction by doping 
         2.1.3.3 Conjugated semiconductors (organic semiconductors) 
   

    2.2 Superconductivity 

    2.3 Ionic conductivity
  
  
3. Power generation by photovoltaic cells
    3.1 Working principle of solar cells 
    3.2 Materials for solar cells 
    3.3 Potential for power generation 
    3.4 Material trends in photovoltaic cells 
  
  
4. Control of electrical power: materials for power electronics 
   4.1 Basic Requirements 
   4.2 Power diodes 
   4.3 Types of power devices
            4.3.1 Bipolar power devices 
            4.3.2 Unipolar power devices 
    4.4 Material Trends in power electronics: Si, SiC, GaN, ZnO, C (diamond, etc.) 
  
  
5. Electric energy storage 
     5.1 Basics electrochemical reactions 
     5.2 Batteries 
              5.2.1 Battery structure and function 
              5.2.2 Traditional materials 
              5.2.3 Materials development for increased energy density

      5.3 Fuel cells/electrolysis
                                     

  
6. Light Generation by LEDs
       6.1 inorganic LEDs: IR, red, green, blue, UV 
       6.2 Organic LEDs (small molecules and polymer) 
  
  
  
  
This is complemented by 2 visits.  One is related to semiconductor substrate production (UMICORE).  The second visit is related to PV-cell manufacturing (imec)

 

 

 

 

 

 

 

 

 

 

Course material

The course material consists of slides.  At the start of every lesson it is shown in which references the students can find additional background reading.  For this course many of the lessons will refer to the following books:

An introduction to Electronic and Ionic Materials by W. Gao and N. M. Sammes

Electronic properties of engineering materials by J. D. Livingston

Power Semiconductor Devices by Vitezslav Benda, John Gowar and D.A. Grant

pdf-files of the relevant chapters are made available through Toledo.

Language of instruction: more information

The language is English

Materials in Electrical Engineering: Exercises and Laboratory Sessions (B-KUL-H04D7a)

0.59 ECTS : Practical 10 Second termSecond term

Content

Approach: The introduction focuses on the physical background of the relevant material properties. Then the course zooms  in on the materials and material trends , from power generation and  electrical power control to electric energy storage and utilization of electrical energy in some applications. It is clear that this is not exhaustive, but it has the objective to illustrate how certain effects  discussed in the introduction can be realized through material choice. Simultaneously the advantages and disadvantages of the different materials are illustrated. Students must also understand the trends of materials research for electrical applications. It is  demonstrated that the concept of nanotechnology has impact on the electric power sector. 
 
Table of Contents: 
  
1. Economic relevance of the materials sector for electrical applications: 
1.1 In the world 
2.2 In Flanders 
  
Duration: 1 hour 
  
2. Physical basis of the relevant material properties 
2.1 Electrical conductivity 
2.1.1 The metal 
2.1.1.1 Conduction in pure monocrystalline crystal metals 
2.1.1.2 Conduction in pure polycrystalline metals: effect of crystallographic imperfections 
2.1.1.3 Conduction in metal alloys 
2.1.2 Transparent conductors 
2.1.3 Semiconductors 
2.1.3.1 Intrinsic conduction properties 
2.1.3.2 Doping 
2.1.3.3 2D, 1D and 0D structures 
2.1.3.4 Conjugated semiconductors (organic semiconductors) 
2.1.4 Insulators 
2.1.4.1 Conduction and breakdown  in solids 
2.1.4.2 Conduction in liquids and breakdown 
2.1.4.3 Conduction in gases and breakdown 
2.1.4.4 Insulation Classes 
2.1.5 Superconductivity 
2.2 Magnetic properties 
2.2.1 diamagnetism, paramagnetism and ferromagnetism 
2.2.2 Curie Point 
2.2.3 Hysteresis 
2.2.4 Permanent magnets 
2.3 Photoelectric Properties 
2.3.1 Absorption of light 
2.3.2 Emission of light 
2.3.3 Stimulated Emission 
2.4 Discussion of additional relevant characteristics 
2.4.1 Thermoelectric effects 
2.4.2 Piezo-electric effect 
2.4.3 Influence of mechanical stress on the conductive properties of metals and semiconductors 
2.4.4 Magneto-resistive effect 
  
Duration: 5 hours 
  
3. Power generation 
3.1 Materials used in electrical generators 
3.1.1 Low-frequency applications 
3.1.2 High-frequency applications 
3.2 Photovoltaic power generation 
3.2.1 Working principle of solar cells 
3.2.2 Materials for solar cells 
3.2.3 Potential for power generation 
3.2.4 Material trends in photovoltaic cells 
  
Duration: 4 hours 
  
4. Control of electrical power: materials for power electronics 
4.1 Basic Requirements 
4.2 Power diodes 
4.3 severals types of power transistors 
            4.3.1 Bipolar power devices 
            4.3.2 Unipolar power devices 
4.4 Material Trends in power electronics: Si, SiC, GaN, ZnO, C (diamond, etc.) 
  
Duration: 4 hours 
  
5. Electric energy storage 
            5.1 Basics electrochemical reactions 
            5.2 Batteries 
                                    5.2.1 Battery structure and function 
                                    5.2.2 Traditional materials 
                                    5.2.3 Materials development for increased energy density 
            5.3 Super Capacity 
                                    5.3.1 Structure, function and characterization 
                                    5.3.2 Materials for high capacity 
                                    5.3.3 Materials Development for increased power density 
            5.4 Fuel cells
                                    5.4.1 Structure, function and characterization 
                                    5.4.2 Materials for Fuel Cells 
                                    5.4.3 Materials Development 
 
Duration: 2 hours 
  
6. Light Generation 
6.2 Different materials for light sources 
            6.2.1 Arc lamps 
            6.2.2 Incandescent lamps
            6.2.3 Gas 
            6.2.4 LEDs 
                        6.2.4.1 inorganic LEDs: IR, red, green, blue, UV 
                        6.2.4.2 Organic LEDs (small molecules and polymer) 
  
Duration: 2 hours 
  
7. Selected Topics 
7.1 Detection Materials 
7.1.1 Materials for T measurements 
7.1.2 Magnetic material detector 
7.1.3 Materials for acceleration sensors 
7.2 Nanotechnology and electrical energy 
            7.2.1 Power: organic solar cells 
            7.2.2 Storage of electrical energy in mesoscopic structures 
  
Duration: 2 hours 
  
  
This is complemented by 
  
1 exercise session of 2 hours in which the process to create and characterize a Si solar cell is explained with a clean room visit. 
1 exercise session of 2 hours in which the switching losses are calculated or simulated by a basic circuit with power components based on Si, SiC or GaN. 
1 exercise session on magnetic losses (Epstein frame etc) 1 exercise session on dielectric properties and HF losses  

*

See Lecture.

Evaluatieactiviteiten

Evaluation: Materials in Electrical Engineering (B-KUL-H24D6a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Closed questions, Open questions
Learning material : Course material

Explanation

Next to the examination moment half of the points are also given based on a group work related to a study of materials for a certain application (e.g. supercapacitors, thermo-electrical power generation, H2-storage).  The students can select these topics from a list given at the start of the course or can make a proposal themselves.  Besides writing a paper on the chosen subject the student (or his group which can consist of maximally 3 people) a presentation is to be given during the last lesson of the semester to the whole group.

The examination itself consists of a couple of questions which can be an exercise or questions testing the physical understanding.  The examination is written but the student, when giving in his examination, can shorty explain the written answers  as well as provide answers to short additional questions.

ECTS Expressievaardigheid in de technische bedrijfsomgeving (B-KUL-H04D8A)

3 studiepunten Nederlands 20 Tweede semesterTweede semester Uitgesloten voor examencontract

Doelstellingen

De basisprinicipes van efficiënte en effectieve Nederlandstalige communicatie in het schriftelijke en mondelinge medium worden bijgebracht in een combinatie van zelfstudie, discussiecolleges en praktijkoefeningen. De aandacht gaat vooral naar tekstsoorten en communicatiemiddelen die in organisatiecontexten functioneren.

Begintermen

Nederlands spreken en schrijven (als moedertaal).

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Expressievaardigheid in de technische bedrijfsomgeving (B-KUL-H04D8a)

3 studiepunten : College 20 Tweede semesterTweede semester

Inhoud

  • Formuleren: correct en aantrekkelijk schrijven
  • Rapporteren: structuuraspecten; informatiegeleding en alineaopbouw
  • Converseren op papier/digitaal: strategische briefcultuur; de goodwillbrief, de slecht-nieuwsbrief, de persuasieve brief; e-mail,
  • Instructies geven: toestelbeschrijvingen voor de gebruiker, briefings schrijven voor medewerkers, ...;
  • Schrijven voor een groot publiek, vulgarisatie, persberichten, ...
  • Mondelinge presentaties: technische en menselijke aspecten
  • Vergaderingen: technische en menselijke aspecten (vergaderstijl van de deelnemers en de voorzitter ); praktijkoefening
  • Gesprekstechnieken: relaties in het gesprek, verbale en niet-verbale signalen, het goed/slecht-nieuwsgesprek, het evaluatiegesprek

Studiemateriaal

Studiekost: 1-10 euro (De informatie over studiekosten zoals hier opgenomen is indicatief en geeft enkel de prijs weer bij aankoop van nieuw materiaal. Er zijn mogelijk ook e- en tweedehandskopijen beschikbaar. Op LIMO kan je nagaan of het handboek beschikbaar is in de bibliotheek. Eventuele printkosten en optioneel studiemateriaal zijn niet in deze prijs vervat.)

Een cursustekst met concrete richtlijnen en achtergrondinformatie is terbeschikking bij de cursusdienst van het VTK.
Slides en achtergrondlectuur worden ter beschikking gesteld op Toledo.

Toelichting onderwijstaal

Moedertaal Nederlands is een vereist voor dit vak.

Evaluatieactiviteiten

Evaluatie: Expressievaardigheid in de technische bedrijfsomgeving (B-KUL-H24D8a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Presentatie, Take-home
Vraagvormen : Open vragen
Leermateriaal : Geen

Toelichting

2 take home opdrachten gedurende het hele tweede semester: 1 voor de paasvakantie, 1 erna. Afsluitende presentatie en mondelinge toelichting aan het einde van het semester. De drie onderdelen (2 schriftelijke plus presentatie/toelichting) tellen elk mee voor een derde van het eindresultaat.

Toelichting bij herkansen

Scriptie: bestaande uit 3 uitgewerkte communicatiemiddelen over een en hetzelfde thema (bv. 1 handleiding, een groep van 3 brieven en een uitgewerkt stuk website; of 1 verkoopsbrief, 1 presentatievoorbereiding en 1 kort rapport, telkens over 1 onderwerp dat je vrij mag kiezen). Elke deelopdracht beslaat ten minste 2 bladzijden tekst.

ECTS Plichtenleer van de ingenieur (B-KUL-H04E0A)

3 studiepunten Nederlands 20 Niet ingerichtNiet ingericht
N.

Doelstellingen

Dit opleidingsonderdeel biedt een uitgebreide inleiding tot de ingenieursethiek. Aan het einde van het opleidingsonderdeel:

  • hebben de studenten een basiskennis van de voornaamste theorieën in de moraalfilosofie (utilitarisme, deontologie, zorgethiek, deugdenethiek), zowel klassieke als hedendaagse;
  • bezitten de studenten een uitgebreide kennis omtrent de belangrijkste ethische vraagstukken rond het ingenieursberoep (de ingenieur als klokkenluider, de rol van de ingenieur in het streven naar sociale rechtvaardigheid, morele vraagstukken rond zelfrijdende auto’s en dodelijk autonome wapens etc.) en de ethische codes van het ingenieursberoep (zowel nationaal als internationaal);
  • hebben de studenten een basiskennis van de ethiek van AI, ethiek rond privacy (inclusief GDPR-regelgeving) en de huidige stand van het onderzoek naar de relatie tussen polarisering en sociale media;
  • zijn de studenten in staat om het aangereikte conceptuele kader toe te passen op nieuwe morele vraagstukken.

Qua ethische vaardigheden kunnen studenten aan het einde van dit opleidingsonderdeel:

  • op heldere en overtuigende wijze argumenteren voor of tegen een bepaalde ethische stellingname;
  • luisteren naar argumenten van docent en medestudenten en hier op een kritische en respectvolle manier op reageren;
  • een ethische argumentatie herkennen, analyseren en evalueren.

Begintermen

Er is geen voorkennis van ethiek vereist.  

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Plichtenleer van de ingenieur (B-KUL-H04E0a)

3 studiepunten : College 20 Niet ingerichtNiet ingericht
N.

Inhoud

De cursus bestaat uit drie delen:

  • Een overzicht van de belangrijkste moraalfilosofische theorieën in de normatieve ethiek: utilitarisme, deontologie, zorgethiek en deugdenethiek (drie weken);
  • Een overzicht van drie hedendaagse debatten in de toegepaste ethiek: de ethische problematiek rond privacy (inclusief overzicht GDPR-wetgeving), ethische vraagstukken rond polarisering en sociale media, ethiek van AI (drie weken);
  • Een uitgebreid overzicht van de hedendaagse ingenieursethiek. Er wordt ingegaan op de belangrijkste ethische vraagstukken rond het ingenieursberoep (de ingenieur als klokkenluider, de rol van de ingenieur in het streven naar sociale rechtvaardigheid, morele vraagstukken rond zelfrijdende auto’s en dodelijk autonome wapens etc.) en de ethische codes van het ingenieursberoep (zowel nationaal als internationaal) (zes weken).

Studiemateriaal

De structuur en belangrijkste inhoud van de colleges wordt aangegeven via slides en extra tekstmateriaal dat op Toledo te vinden zal zijn. Enkel wat in de les besproken wordt, moet gekend zijn voor het examen. De colleges zijn gebaseerd op de volgende twee handboeken, maar de studenten zijn niet verplicht om deze handboeken aan te kopen:

  • M. VAN HEES, T. NYS, I. ROBEYNS (ed.), Basisboek Ethiek. Amsterdam, Boom, 2014
  • D.G. JOHNSON, Engineering Ethics. Contemporary & Enduring Debates. New Haven, Yale University Press, 2020.

Evaluatieactiviteiten

Evaluatie: Plichtenleer van de ingenieur (B-KUL-H24E0a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Schriftelijk
Vraagvormen : Open vragen, Gesloten vragen
Leermateriaal : Geen

Toelichting

Het examen is schriftelijk (zowel open als gesloten vragen).

ECTS Veiligheid in elektrische installaties (B-KUL-H04E8A)

3 studiepunten Nederlands 28 Eerste semesterEerste semester

Doelstellingen

De student heeft een grondige kennis van de gebruikelijke beveiligingsconcepten. De kennis van  de klassieke en geavanceerde beschermingstoestellen en protocollen kan door de student aangewend worden om zowel de personenveiligheid, de bescherming van het net als de bescherming van de netelementen en aangesloten machines correct door de voeren.
 

Begintermen

De student heeft elementair inzicht in alle elementen van een net voor verdeling of transport van elektrische energie. Hij kan kortsluitstromen van alle soorten berekenen en kent de principes van elektronische logische schakelingen en telecommunicatie.
Beginvoorwaarden : Opleidingsonderdelen 'basiselementen van het elektriciteitsnet' en 'industriele regeltechniek' gevolgd hebben, of gelijkaardig.

Volgtijdelijkheidsvoorwaarden



GELIJKTIJDIG (H04A0A)


H04A0AH04A0A : Power Systems

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Veiligheid in elektrische installaties: hoorcollege (B-KUL-H04E8a)

2.41 studiepunten : College 18 Eerste semesterEerste semester

Inhoud

HOOFDSTUK 1: OBJECTIEF VAN DE NETBEVEILIGING
1.1 Doel van de netbeveiliging
1.2 Structureel verschil tussen transportnet en distributienet
1.3 Definitie van betrouwbaarheid, zekerheid en veiligheid
1.4 Selectiviteit
1.5 Elementen van een beschermingsinstallatie (schakelenenergie, schakelaars, relais)
 
HOOFDSTUK 2: HET A.R.E.I.
2.1 Toepassingsgebied, definities en structuur
2.2 Bescherming tegen rechtstreekse aanraking
2.3 Bescherming tegen onrechtstreekse aanraking (TN, TT en IT)
2.4 Aarding bij laagspanning en hoogspanning
 
HOOFDSTUK 3: WERKINGSPRINCIPES VAN RELAIS
3.1 Foutdetectie (amplitude criterium, differentiele meting, afstandsmeting)
3.2 Elektromechanische relais (met electromagneten, met inductieklok of -schijf)
3.3 Elektronische relais (overstroom, fazevergelijking)
3.4 Digitale relais (structuurelementen, flowchart)
3.5 Hulprelais en tijdskarakterisiteken
 
HOOFDSTUK 4: STROOMTRANFORMATOREN
4.1 Stroomtransformator in regime (werking, klassen, aanduiding,)
4.2 Transiënt gedrag van stroomtransformatoren
4.3 Hulpwikkelingen, ster en driehoekschakelingen, homopolaire stroom detectie
4.4 Optische en elektronische lineaire stroomtransducers
 
HOOFDSTUK 5: SPANNINGSTRANFORMATOREN
5.1 Inductieve en capacitieve spanningstransformatoren in regime
5.2 Transiënt gedrag van capacitieve spanningstransformatoren
5.3 Optische en elektronische spanningstransducers
 
HOOFDSTUK 6 : LIJNBESCHERMING DOOR OVERSTROOMDETECTIE
6.1 Bescherming op laagspanning volgens het A.R.E.I.
6.2 Wisselwerking tussen smeltveiligheden, herinschakelaars en scheiders(radiaal net)
6.3 Inverse tijdsrelais (principe, afstelling, selectiviteit)
6.4 Inverse tijdsrelais met onmiddelijke afschakeling (voordeel, afstelling)
6.5 Inverse tijdsrelais met richtingsrelais (gesloten lus uitbating, maximale koppelhoek)
 
HOOFDSTUK 7: LIJNBESCHERMING DOOR AFSTANDSRELAIS
7.1 Getrapte tijd-afstand afschakelkarakteristiek
7.2 Beeldpunt van de fout in de getroffen faze(n)
7.3 Driefazige afstandsrelais (één, twee en driefazige foutdetectie)
7.4 Beeldpunt van een fout in de gezonde fazen
7.5 Het R-X plaatsdiagram, types van plaatsdiagrammen en hun verwezenlijking
7.6 Bijzondere vraagstukken (nulspanning, meerterminalen en parallelle lijnen)
7.7 Invloed van compensatietoestellen, overbelasting en lastschommelingen
 
HOOFDSTUK 8: LIJNBESCHERMING MET PILOOTSIGNALEN
8.1 Communicatieapparatuur
8.2 Differentiële lijnbescherming (korte lijnen)
8.3 Directionele signaalvergelijking
8.4 Fazevergelijking
8.5 Speciale problemen (verkorte en verlengde bewakingsafstand)
 
HOOFDSTUK 9: MACHINEBESCHERMING
9.1 Statorfouten
9.2 Rotorfouten
9.3 Bescherming tegen onevenwichtige belasting
9.4 Bescherming tegen overbelasting
9.5 Bescherming tegen bekrachtigingsverlies
9.6 Bescherming tegen oversnelheden
9.7 Bescherming van de hulpdiensten
9.8 Speciale voorzieningen (ongeplande inschakeling, trillingen, afschakellogica)
 
HOOFDSTUK 10: TRANSFORMATORBESCHERMING
10.1 Overstroombescherming
10.2 Procentuele differentieelrelais
10.3 Invloed van inschakelstroom
10.4 Driefazige bescherming
10.5 Volt-Herz bescherming
10.6 Buchholzrelais
10.7 Bescherming van de transformator als integraal onderdeel van een onderstation
 
HOOFDSTUK 11: RAILS, SPOEL EN CAPACITEITEN BESCHERMING
11.1 Overstroom en differentieel railbeschermingsschema's
11.2 Hoge impedantie railsbeschermingrelais
11.3 Lineaire transducersschema's
11.4 Directionele railsbescherming
11.5 Bescherming van shuntspoelen
11.6 Bescherming van capaciteitsbanken
 
HOOFDSTUK 12: SYSTEEMASPECTEN VAN NETBESCHERMING
12.1 Bescherming tegen niet-werking van een vermogenschakelaar
12.2 Statische stabiliteitsgrens
12.3 Bescherming tegen verlies aan synchronisme en vermogenslingeringen
12.4 Automatische afschakelen van belastingen en heraanschakelen
12.5 Testbanken en computerprogrammas voor relaisafstelling.
Deze kennis wordt toegepast op het ontewerp van elektrische installatiesin gebouwen.

Studiemateriaal

Cursus staat ter beschikking op Toledo

Veiligheid in elektrische machines: oefeningen (B-KUL-H04E9a)

0.59 studiepunten : Practicum 10 Eerste semesterEerste semester

Inhoud

zie hoorcolleges

Opstellen van een beveiligingsschema in een radiaal net (Van Hoogspanning tem Laagspanning, incl. de beveiliging van motoren)

Studiemateriaal

Opgavestelling en bijhorende data tijdens de oefenzittingen (datasheets, referenties,...)

Evaluatieactiviteiten

Evaluatie: Veiligheid in elektrische installaties (B-KUL-H24E8a)

Type : Examen tijdens de examenperiode
Evaluatievorm : Mondeling
Vraagvormen : Gesloten vragen, Open vragen
Leermateriaal : Rekenmachine

Toelichting

Mondeling examen met schriftelijke voorbereiding. Met gesloten boek (geen leermateriaal toegelaten); rekenmachine toegelaten.

Toelichting bij herkansen

Herkansing : zelfde systematiek als bij eerste examen

ECTS Capita selecta ingenieurswetenschappen II.1. (Athens / Summer Course) (B-KUL-H04K9A)

3 studiepunten Nederlands 30 Eerste semesterEerste semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

 

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen II.1. (Athens / Summer Course) (B-KUL-H04K9a)

3 studiepunten : College 30 Eerste semesterEerste semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen II.1. (Athens / Summer Course) (B-KUL-H24K9a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.
 

Toelichting bij herkansen

 

ECTS Project Management (B-KUL-H04X2A)

3 ECTS English 20 Second termSecond term Cannot be taken as part of an examination contract
Duflou Joost (coordinator) |  Duflou Joost |  Joubert Johan

Aims

The aim of this course is to provide the student with an overview of techniques and means that are available for the start up, execution, follow up and adjustment of large projects. By means of examples and case studies insight is created  supporting recognition of typical patterns, analysis of situations and identification of  suitable methods and/or techniques recommendable for effectively steering projects, with well-optimized chances to reach the  preset project deliverables. 
 

Previous knowledge

This course is not connected to a specific graduation programme. Therefore, the contents of the assignments can be altered to suit the graduation programme of the student. Still, it is recommended to plan this course in a later stage of the master programme to ensure that any lack of technical background will be not be a hindrance in working on specific cases or assignments. Access to a familiar project case (e.g. thesis project) is required in view of the evaluation format which is based on a case study. A possible course on business administration in the curriculum can best be scheduled before attending this course.

Is included in these courses of study

Onderwijsleeractiviteiten

Project Management (B-KUL-H04X2a)

3 ECTS : Lecture 20 Second termSecond term

Content

Introduction

  • What is project management?
  • Situation within the general planning problem
  • Characteristics of projects
  • Project manager
  • Components, concepts and terminology
  • Life cycle of a project: strategical and tactical considerations
  • Factors responsible for the success of a projectOrganisational structures and task allocation
  • Organisational structures
  • Staff management
  • Concurrent engineering
  • Assessment and selection
  • Division of a project
  • Outsourcing or internal work?
  • Conflict evaluation:  within the organisation, environmental effects, othersProject planning
  • Introduction
  • Duration of project activities
  • Learning effects
  • Precedence relations
  • Gantt-representation
  • Arrow network for critical path mathematics
  • Block network for critical path mathematics
  • LP formulation
  • Aggregation of activities
  • Dealing with uncertainty
  • Analysis of PERT and CPM presuppositions
  • Conflicts in planningProject budget
  • Introduction
  • Project budget and company goals
  • Drawing up a budget
  • Budget management
  • FinancingManagement of resources
  • Influence of resource limitations on the project
  • Classification of resources
  • Planning of resources and project with time as a limiting factor
  • Planning of resources and project with resources as a limiting factor
  • Priority rules for the allocation of resources
  • Subcontracting/assessing suppliers
  • Executing projects in parallelProject control
  • Introduction
  • Control systems
  • Following up and controling timewise planning and costs
  • Reporting
  • Updating cost and planning parameters
  • Technological controlComputer support for project management
  • Introduction
  • Use of computers
  • Criteria for software selection
  • Software implementation
  • Data management and knowledge managementProject termination
  • Introduction
  • When to finalise a project?
  • Final steps in the termination of a projectCase studies

Course material

Handbook, presentations (on Toledo).

Format: more information

Lecture.

Evaluatieactiviteiten

Evaluation: Project Management (B-KUL-H24X2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions, Closed questions
Learning material : None

Explanation

Assignment per two students with presentation and defense (oral exam) during exam session. Exam timing is coordinated per team of students.

ECTS Analysis of Digital Communication Systems (B-KUL-H05A0A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract

Aims

At the end of this course the student shall have a working knowledge of digital communication systems, with focus on the modulation techniques and the quality of transmission. This covers a range of topics starting with random processes, going to baseband transmission and leading to modern wideband modulation techniques. The student shall have insight in the techniques (understand) and be able to quantify their properties (calculate).

Previous knowledge

Practical knowledge of a number of mathematical tools: random variables, trigonometric functions, complex numbers, phasors, Fourier-transforms. 
Basic knowledge of telecommunication principles, electronic circuits and system theory.

Identical courses

H05B6A: Analyse van digitale communicatiesystemen

Is included in these courses of study

Onderwijsleeractiviteiten

Analysis of Digital Communication Systems: Lecture (B-KUL-H05A0a)

2.41 ECTS : Lecture 18 First termFirst term

Content

Signals for telecommunications (review)
- Analysis of deterministic signals (Fourier-transform and spectra, Power Spectral Density and autocorrelation function)
- Analysis of stochastic processes (Power spectral density, Theorem of Wiener-Khintchine, Stationarity, Ergodicity, White noise, Gaussian noise)
Baseband communication
- Digital baseband transmission (Line codes, PSD for binary and multilevel line codes)
- The quality of baseband signal transmission (Intersymbol interference, Matched filters, Bit error rate for binary signaling)
Bandpass transmission
- Signals and circuits for bandpass transmission (The complex envelope, spectrum of bandpass signals, Mixers, up- and down-convertors, Detector circuits, Transmitters and receivers)
- Binary modulated bandpass signaling (On-Off Keying (OOK),Binary Phase Shift Keying (BPSK), Frequency Shift Keying (FSK)
- Multi-level bandpass modulation (QPSK and MPSK, Quadrature Amplitude - Modulation (QAM), PSD for MPSK and QAM)
- Minimum Shift Keying (MSK) (From FSK to MSK, interpretation as OQPSK, GMSK)
- Spectral efficiciency of digital badpass communication
- Probability of error for binary communication (OOK, BPSK, FSK, QPSK, MSK)
- Quadrature phase-shift keying en minimun-shift keying
- Comparison of digital signaling schemes (Bit error rate and bandwidth)
- Multichannel modulation              (Orthogonal Frequency Division Multiplexing (OFDM), Discrete MultiTone (DMT)
- Spread-spectrum systems (Direct Sequence, Frequency hopping)
 

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

The slides used are available through the students organisation VTK. A handbook is referred to: Leon W. Couch, 'Analog and digital communication systems', Prentice Hall. Currently edition 7 is sold by VTK and in the Leuven bookshops, older editions can be used without difficulty.

Format: more information

This is a series of  nine two hour lectures, with interaction between students and teacher.

Analysis of Digital Communication Systems: Exercises and Practical Training (B-KUL-H05S1a)

0.59 ECTS : Practical 10 First termFirst term

Content

Problems are solved related to the following topics:
- random processes
- PSD of line codes and modulated transmissions
- ISI, bit-error rate and matched filter
- complex envelope and modulation techniques
- bit-error-rate

Course material

The reference material of the lectures is used. Exercises and solutions are provided during and after the sessions.

Format: more information

During the sessions the students work on problems and exercises with the help of a teaching assistance, and they have the opportunity to further discuss the material with their peers and the teaching assistent.

Evaluatieactiviteiten

Evaluation: Analysis of Digital Communication Systems (B-KUL-H25A0a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material, Calculator, Reference work

Explanation

The student will solve two questions, each with a number of subdivisions. These questions both cover theoretical aspects and practical calculations. Both insight (qualitative) and manipulation of equations (quantitative) are tested.

This is an open book exam.
What is allowed:
- course material= a print of the powerpoint slides (by VTK)
- the reference book= the book by Couch (Digital and analog communication systems)
- a calculator
Not allowed: any other document or electronic device

ECTS Computer Architectures (B-KUL-H05D3A)

3 ECTS English 28 Second termSecond term

Aims

This course gives the student a detailed insight into the architecture and organization of modern computer systems. After this course students should be able to:
1. Explain the differences between commercially available computer systems and choose the best suited architecture for a given application
2. Use hardware knowledge to optimize the execution of computer applications, and application knowledge to optimize underlying hardware
3. Critically discuss current trade-offs of modern computer architectures, illustrate them with a real life example, and grasp new developments and trends in the field of computer architectures.

The goal of the exercise sessions is to understand and apply knowledge from theoretical ex-cathedra sessions, and from the studied material.

  • analyze and evaluate computer architectures
  • understand the inside of microprocessors and computers
  • design (simple) computer architectures

Previous knowledge

To be able to follow this course, you should have had either the following bachelor course or elective master course at KU Leuven:

  • Digitale elektronica en processoren (B-KUL-H01L1A)

  • Computerarchitectuur en systeemsoftware (B-KUL-H01P5A)

  • Computer Architectures and the HW/SW Interface (B-KUL-H0O38A)

If you followed you bachelors elsewhere, you should have had a course that teaches:

  • digital logic
  • gates, circuits and combinational logic (Boolean algebra, Karnaugh maps, tri-state logic,…)
  • sequential logic (flipflops, counters, state machines, ...)
  • computer arithmetic (number representations and arithmetics)
  • Instruction set architectures
  • basis processor architectures (single cycle processor, pipelined processors, caches and virtual memory)

Identical courses

H05D5A: Computerarchitecturen

Is included in these courses of study

Onderwijsleeractiviteiten

Computer Architectures: Lecture (B-KUL-H05D3a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Topics covered are:

  • Enhancing Processor Performance with advanced memory techniques
  • Enhancing Processor Performance with advanced parallelization techniques
    • super scalar processing
    • multi-treading and multi-core
    • GPU and application specific processsors
  • System level processor design considerations
    • An overview of Computer Architectures for Desktop, Server, and Embedded Computers

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Handouts of slides + (loosely followed) reference book:

Computer Architecture: A Quantitative Approach
John L. Hennessy, David A. Patterson

Computer Architectures: Exercises and Laboratory Sessions (B-KUL-H05D4a)

0.59 ECTS : Practical 10 Second termSecond term

Content

In 3 exercise sessions, we will optimize a specific RISC-V processor to improve performance for a target application. This is done through hardware modifications to the processor, and instruction set design. 

A fourth exercise session will practice pen-and-paper architectural design for processors, preparing for the exam.

Format: more information

Design and improve a processor in verilog to run given code more efficiently.

Evaluatieactiviteiten

Evaluation: Computer Architectures (B-KUL-H25D3a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Report
Type of questions : Open questions
Learning material : Calculator

Explanation

The project given in the exercise sessions will have to be submitted and is graded, as part of the final grade of this course. The information and knowledge passed in the lectures and the 4th exercise session is evaluated at the exam during the examination period.

During the exam, only non-graphical calculators are allowed.

Information about retaking exams

When retaking this exam, the grade given on the project will be maintained, and be combined with the new evaluation of the exam during the 3rd examination period.

ECTS Computer-Aided IC Design (B-KUL-H05D7A)

3 ECTS English 28 First termFirst term
Gielen Georges (coordinator) |  Dehaene Wim |  Gielen Georges

Aims

The objectives of this course are to provide insight in the basic algorithms that are used in the design of CAD tools utilized by designers of integrated circuits. Based on the understanding of the algorithms, insight is developed in the capabilities and limitations of computer-aided design (CAD) and design automation tools for electronic circuits.

Previous knowledge

The student must have prior knowledge from the courses "Basic electronic circuits" and "Analog building blocks for signal processing".

Onderwijsleeractiviteiten

Computer-Aided IC Design: Lecture (B-KUL-H05D7a)

2.41 ECTS : Lecture 18 First termFirst term

Content

This course studies the basic algorithms as used in advanced electronic CAD tools :

1. Simulation of integrated circuits

Basic algorithms for circuit simulation. Device models for circuit simulation. Basic techniques for the simulation of RF circuits. Higher-level modeling of integrated circuits. Notions of hardware description languages (such as VDHL-AMS and VERILOG-A/MS). Symbolic analysis of circuits.

2. Analog circuit and layout synthesis

 

Basic techniques for the optimization of the design and layout of integrated circuits. Efficient global optimization algorithms and applications (simulated annealing, genetic algorithms). Basic techniques of layout synthesis, including algorithms for placement and routing of integrated circuits.

 

3. Design for yield and reliability

Techniques for the analysis of the impact of stochastic process parameter variations and yield optimization. Methods to deal with variability during design. Reliability problems and analysis: aging, substrate noise couplings, EMC, etc.

4. Testing and design for testability of integrated circuits

Importance of design verification and testing. Techniques for fault analysis and test generation. Design for testability methods.

Course material

Handouts distributed by the lecturer.

Computer-Aided IC Design: Exercises and Laboratory Sessions (B-KUL-H05D8a)

0.59 ECTS : Practical 10 First termFirst term

Content

The exercise sessions are combined into a project related to the course material covered in the lectures.

Course material

Handouts are made available to the students.

Evaluatieactiviteiten

Evaluation: Computer-Aided IC Design (B-KUL-H25D7a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material

Explanation

Oral examination. Open book. Questions are about the course project as turned in by the student (counts for 2/3 of the course grade) and about the course material covered in the lectures (counts for 1/3 of the course grade). No course grade will be given if no project is completed and turned in.

Information about retaking exams

The exam of the second exam round has the same format as in the first exam round. A new or extended project must be turned in by the designated deadline before the exam.

ECTS Cryptography and Network Security (B-KUL-H05E1A)

3 ECTS English 28 First termFirst term
Preneel Bart (coordinator) |  Preneel Bart |  Rijmen Vincent

Aims

  After succesful completion of this course, the student knows

  • the different security goals and how they can be achieved by means of cryptography
  • cryptographic mechanisms: encryption, data authentications, entity authentication, digital signatures
  • the most important symmetric and asymmetric cryptographic algorithms, as well as cryptographic hash functions  (DES, 3-DES, AES, RC4, RSA, DH, DSA, SHA-1, SHA-256/384/512)
  • protocols for key agreement and PKI

Additionally, the student understands how these basic cryptographic mechanisms are used in several modern applications:

  • Internet security mechanisms (SSL/TLS, IPSec)
  • Mobile security (GSM)
  • Electronic payment mechanisms (EMV, electronic purse, electronic cash)

Previous knowledge

Basic knowledge of discrete mathematics (algebra), information theory and communication systems.

Identical courses

H05D9A: Cryptografie en netwerkbeveiliging

Onderwijsleeractiviteiten

Cryptography and Network Security: Lecture (B-KUL-H05E1a)

2.41 ECTS : Lecture 18 First termFirst term

Content

This course explains the basic concepts of cryptology. More in particular, you will learn how cryptographic techniques can protect information against active and passive eavesdropping and how one can authenticate entities. Cryptographic algorithms that are explained include DES, AES, RC4, RSA, Diffie-Hellman, SHA-1, CBC-MAC and HMAC. The role of key management and public-key infrastructures is discussed.
In a second part this knowledge is applied to communications systems, such as GSM and 3GPP, the www (SSL/TLS), email (S/MIME and PGP) and IP (IPsec). The principles of electronic payment systems are explained (EMV, Proton, micropayments). The courses focuses on the development of insight in the basic techniques, and in what they can and cannot do. Applying the knowledge to existing systems is a very important component of this course.

The lectures cover all topics of the course.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

VTK prints a book containing all the slides that are used during the lectures, some background articles and some supporting text. 

Cryptography and Network Security: Exercises and Laboratory Sessions (B-KUL-H05E2a)

0.59 ECTS : Practical 10 First termFirst term

Content

During the exercises and practica, we cover the topics of two important lectures in more detail:

  • public-key cryptography, and
  • generic attacks on modes of operation of block ciphers and hash functions

 

Course material

The students get a list of exercises (more than are solved during the sessions). 

Format: more information

Three exercise sessions are a preparation for the open-book exam: exercises are solved in the class.

The remaining exercise sessions are replaced by a presentation. Teams of 2 students prepare a presentation of 20 minutes
on a topic selected from a given list of topics related to the lecture. This presentation takes place before start of the exam period.

Evaluatieactiviteiten

Evaluation: Cryptography and Network Security (B-KUL-H25E1a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Presentation
Type of questions : Closed questions, Open questions
Learning material : Course material, Calculator, Reference work

Explanation

The exam result is a weighted score that is determined as follows. The traditional exam during the examination period is taken into account for 85% in the end result and the presentation for 15%.

The exam during the examination period is written. It is an open book exam; additional texts may be consulted. The exam consists of exercises and a closed question, where one has to indicate whether a statement is true or false; if the statement is false, it has to be explained why.

Part of the exercises sessions are replaced by giving a presentation on a recent scientific article related to this course. This presentation is mandatory: not giving a presentation automatically means an automatic failing grade for this course. Students must also attend two sessions of presentation by their fellow students.  

Information about retaking exams

The quotation of the presentation is retained for the 2nd examination period.  If the student wishes to give a (new) presentation for the 2nd examination period, an appointment must be made with the teacher before August 1.

ECTS Design of Analog and Mixed-Signal Integrated Circuits (B-KUL-H05E3A)

6 ECTS English 56 Second termSecond term
Tavernier Filip (coordinator) |  Piessens Tim |  Tavernier Filip

Aims

The objective is to understand the implementation details of the most relevant analog and mixed-signal building blocks. Additionally, the student should develop a proper design approach towards the discussed building blocks specifically, and towards analog design in general.

Previous knowledge

This course assumes that the student is familiar with the contents of the following courses:
- H01M3A - Elektronische basisschakelingen
- H01M5A - Halfgeleidercomponenten
- H06A3A - Analog and mixed-signal electronics for signal processing
- H0E92A - Design and implementation of analog circuits

Identical courses

H05G8A: Ontwerp van analoge en gemengd-signaal geïntegreerde schakelingen

Onderwijsleeractiviteiten

Design of Analog and Mixed-Signal Integrated Circuits: Lecture (B-KUL-H05E3a)

4.83 ECTS : Lecture 36 Second termSecond term

Content

Lecture 1: Sample and hold

Lecture 2: Digital-to-analog conversion

Lecture 3: Digital-to-analog conversion

Lecture 4: Nyquist analog-to-digital conversion

Lecture 5: Nyquist analog-to-digital conversion

Lecture 6: Nyquist analog-to-digital conversion

Lecture 7: Design example and ADC testing

Lecture 8: Sigma-delta analog-to-digital conversion

Lecture 9: Sigma-delta analog-to-digital conversion

Lecture 10: DC-DC conversion

Lecture 11: DC-DC conversion

Lecture 12: Bandgaps

Lecture 13: Tuned amplifiers

Lecture 14: PLLs and prescalers

Lecture 15: VCOs

Lecture 16: VCOs

Lecture 17: Wireline communication circuits

Lecture 18: Optical communication circuits

Course material

All lecture material will be available on Toledo.

Design of Analog and Mixed-Signal Integrated Circuits: Exercises and Laboratory Sessions (B-KUL-H05E4a)

1.17 ECTS : Practical 20 Second termSecond term

Content

During the exercises sessions, a single analog design project is executed by a team of two students. At the end of project, a report needs to be submitted summarizing the design. Also, a presentation is given about the design. The report and the presentation are part of the evaluation of this course.

Course material

The assignment is made available during the first excercise session.

Evaluatieactiviteiten

Evaluation: Design of Analog and Mixed-Signal Integrated Circuits (B-KUL-H25E3a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Report, Presentation
Type of questions : Open questions
Learning material : Course material

Explanation

The exam consists of two parts:
1. 10/20 points: report (5/20) and presentation (5/20) of the design that has been made during the excercise session.
2: 10/20 points: discussion of an assigned paper from the IEEE Journal of Solid-State Circuits (5/20) and questions from the course (5/20). The paper and the list of questions will be posted on Toledo.

If the evaluation indicates that the student has not sufficiently met one or several of the aims of the course unit, the global result may deviate from the weighted average of all subcomponents.

Information about retaking exams

It is not possible to retake the first part of the exam. A regular re-examination is possible for the second part of the exam.

ECTS Electromagnetic Interference in Analogue and Digital Systems (B-KUL-H05E9A)

3 ECTS English 28 First termFirst term

Aims

This course studies the influence of the ever more agressive electromagnetic 'radiation' environment on the telecom devices that are present in it, and vice versa.

Previous knowledge

The students are expected to have thorough knowledge of the courses 'General physics' of the bachelors, 'Electromagnetic waves' and 'Electronic basic circuits'.
Preliminary conditions:
Having passed the exam of Bachelor courses such as 'General physics', 'Electromagnetic waves' and 'Electronic basic circuits'.

Is included in these courses of study

Onderwijsleeractiviteiten

Electromagnetic Interference in Analogue and Digital Systems: Exercises and Laboratory Sessions (B-KUL-H05E0a)

0.59 ECTS : Practical 10 First termFirst term

Course material

The students receive the assignments during the exercise sessions. First, the most important aspects of theory are revised. Next, an exercise is solved together with the teacher. Finally, the students are given the possibility to solve exercises with guidance.

Electromagnetic Interference in Analogue and Digital Systems: Lecture (B-KUL-H05E9a)

2.41 ECTS : Lecture 18 First termFirst term

Content

The use of more and more electrical and electronical devices within the same space has drastic consequences for the correct functioning of these devices. In this course, it will be indicated clearly in which basic manners different devics can be linked to each other, and thus how they can disturb each other. Afterwards, it will be investigated how, for different important practical cases one can optimally design a matching telecom system, and secondly, how a problem diagnosis can be made and a remedy can be found for existing telecom systems.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Handbook:
"Elektromagnetische Compatibiliteit. Analyse en onderdrukking van stoorproblemen".
Dr. J.J. Goedbloed. Kluwer

Evaluatieactiviteiten

Evaluation: Electromagnetic Interference in Analogue and Digital Systems (B-KUL-H25E9a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : None

Explanation

The exam is closed book.

ECTS Digital Signal Processing for Communications and Information Systems (B-KUL-H05F1A)

6 ECTS English 56 First termFirst term Cannot be taken as part of an examination contract
Moonen Marc (coordinator) |  Bertrand Alexander |  Moonen Marc

Aims

Lecture &  study material:
- Demonstrating the importance of digital signal processing in present-day electronic systems.
- Explaining basic concepts of digital signal processing, in particular filter design and filter realization, optimal and adaptive filters, filterbanks and time-frequency transforms.
- Providing an introduction to recent developments and advanced topics, related to the mentioned topics (e.g. wavelet filter banks, perfect reconstruction filter banks, 'fast' adaptive filters, etc.).

Project work:
- Designing and demonstrating a concrete real-time signal processing system (acoustic modem), based on signal processing concepts studied in the lectures.

Previous knowledge

Linear systems theory (input-output behaviour, differential/difference equations, Laplace and Z- transforms) and
basic digital signal processing (FIR/IIR filters, convolution/correlation, DFT/FFT).


 

Identical courses

H05F3A: Digitale signaalverwerking voor communicatie- en informatiesystemen

Onderwijsleeractiviteiten

Digital Signal Processing for Communications and Information Systems: Lecture (B-KUL-H05F1a)

4.83 ECTS : Lecture 36 First termFirst term

Content

Part I: Introduction
1. Introduction
2. Signals and Systems Review
3. Acoustic Modem Project

Part II : Filter Design & Implementation
4. Filter Design
5. Filter Realization
6. Filter Implementation

Part III : Optimal & Adaptive Filtering
7. Optimal Filters - Wiener Filters
8. Adaptive Filters - LMS & RLS
9. Square Root and Fast RLS Algorithms
10. Kalman Filters

Part IV : Filter Banks and Time-Frequency Transforms
11. Filter Banks Preliminaries
12. Filter Bank Design
13. Frequency Domain Filtering
14. Time-Frequency Analysis and Scaling

Part V : Outro
15. DSP in Digital Subscriber Line (DSL) technologies (guest lecture, attendance is mandatory)

Course material

Lecture slides  and supporting handbooks.

Digital Signal Processing for Communications and Information Systems: Exercises and practica (B-KUL-H05F2a)

1.17 ECTS : Practical 20 First termFirst term

Content

Acoustic Modem Project:

Design of a concrete real-time signal processing system for digital communication over an acoustic channel (from a loudspeaker to a microphone), based on signal processing concepts studied in the lectures.

Software design in Matlab/Simulink with Real-Time Workshop (R).

 

Course material

Handouts.

Format: more information

Eight supervised lab sessions plus homework.

Evaluatieactiviteiten

Evaluation: Digital Signal Processing for Communications and Information Systems (B-KUL-H25F1a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Course material

Explanation

The project work is graded during the lab sessions and accounts for 25% of the grade.

The written exam accounts for 75% of the grade.

 

Information about retaking exams

Retake exam (in the 3rd exam period) has one additional question on the project work.

 

ECTS Measurement Systems (B-KUL-H05F7A)

3 ECTS English 28 First termFirst term

Aims

After succesful completion of this course the student has acquired these competences:

  • The student has an overview of and insight in the working principles of the most widely used sensors and their applications and is capable of choosing the right sensor for a given measurement problem.
  • The student has gained hands-on experience with PC based measurements
  • The student has gained hands-on experience with several commonly used sensors and measurements

Previous knowledge

Basic knowledge of the laws of physics and of electronics, i.e. electricity and magnetism, information and data transfer, applied mechanics.

Is included in these courses of study

Onderwijsleeractiviteiten

Measurement Systems: Lecture (B-KUL-H05F7a)

2.41 ECTS : Lecture 18 First termFirst term

Content

In the lectures, the following topics will be discussed:

  • general concepts: static characteristics of measurement systems (systematic and statistical), accuracy in the steady state, dynamic characteristics of measurement systems and noise
  • specific sensors: resistive, capacitive, inductive, electromagnetic, thermoelectric, elastic, piezoelectric, piezoresistive, electrochemical sensing elements, Hall effect sensors
  • specific measurements: flow, pneumatic measurement systems, heat transfer effects, optical measurement systems and ultrasonic

Course material

Study cost: 76-100 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

A course text will be mad available by VTK

slides will be made available through Toledo

Format: more information

This educational activity consists of nine lectures.

Measurement Systems: Exercises and Laboratory Sessions (B-KUL-H05F8a)

0.59 ECTS : Practical 10 First termFirst term

Content

During the practical sessions, the students will learn to interprete datasheets and control a measurement system using an Arduino microcontroller and the Python programming language. Afterwards, these will be used to perform measurements in various set-ups with different sensors (temperature, force, pressure, flow...). This complements the theoretical background that is given in the lectures.

Course material

The students receive an introductory text about the Arduino, sensor datasheets, an introduction to the Python modules used, a description of the measurement set-ups and a list with questions that need to be answered in every measurement session.

Format: more information

Four laboratory sessions: one about Arduino and python, and three others about measurements in practice. For the latter, a report with measurement results needs to be made, to be handed in at the end of the session. This report will receive a score that is included in the final marks for the course.

Evaluatieactiviteiten

Evaluation: Measurement Systems (B-KUL-H25F7a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Report
Type of questions : Open questions
Learning material : None

Explanation

The evaluation consists of the exam at the end of the semester, and an evaluation of the reports of the lab sessions with compulsory attendance.

Information about retaking exams

A student who has failed for this course but has passed for the part consisting of the lab reports, does not have to retake the lab sessions. The results of the lab sessions are transferred to the second exam chance, which in that case only consists of a retake of the exam.

ECTS Compute Platforms for AI and Embedded Processing (B-KUL-H05H2A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract

Aims

The aim of this course is to learn to design larger digital integrated systems-on-chip (SoCs), and this especially in the area of AI and perceptive sensory systems. The course will start from the design, computer architecture and methodology knowledge gathered from previous courses. Special attention will be given to :

  • acquiring knowledge on state-of-the-art efficiency enhancement techniques used in processors and accelerators

  • the design trade-offs between performance, cost, power usage and flexibility

  • the tight interplay and co-optimizations between hardware and algorithms (HW-alg co-design).

Previous knowledge

A succesful exam of the following courses is advised

  • h09j6 design of digital platforms
  • h05d3a computer architectures

 

 

Order of Enrolment



(FLEXIBLE (H05D3A) OR FLEXIBLE (H05D5A))


H05D3AH05D3A : Computer Architectures
H05D5AH05D5A : Computerarchitecturen

Onderwijsleeractiviteiten

Compute Platforms for AI and Embedded Processing: Lecture (B-KUL-H05H2a)

2.41 ECTS : Lecture 18 First termFirst term

Content

This course will dive deeper into the following topics:

  • Evolution in (embedded) processor chips
  • Overview of AI hardware, computer architectures for AI and deep learning
  • Processor tecniques for power management and adaptive operation of large SoC
  • Design verficiation using system verilog
  • Guest lecture on industrial SoC development

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Ad hoc material put on Toledo.

Format: more information

There are theoretical classes and exercise sessions.

Compute Platforms for AI and Embedded Processing: Exercises and Laboratory Sessions (B-KUL-H05H3a)

0.59 ECTS : Practical 10 First termFirst term

Content

This class encompasses a mixture of prerecorded knowedge clips, more interactive class sessions and design exercises.

Course material

Ad hoc material put on Toledo.

Evaluatieactiviteiten

Evaluation: Compute Platforms for AI and Embedded Processing (B-KUL-H25H2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions

Explanation

There are three types of questions:

  • questions about the theory taught in the classes
  • questions about a related paper
  • questions about the design exercise, which needs to be submitted at the end of the project (deadline announced in the work sessions). 

Information about retaking exams

Students taking this exam in the 3rd examation period, will get a modified design exercise, and need to submit this again before the exam. It will again be orally discussed at the exam.

ECTS Stochastic Signal and System Analysis (B-KUL-H05I7A)

3 ECTS English 28 Second termSecond term

Aims

After succesful completion of this course the student has acquired these competences:

  • The student understands the extension of the signal processing theory with the processing of random or stochastic signals
  • The student understands the rather theoretical aspects of the course and is able to use the gained knowledge in applications
  • The student has touched a few possible applications of the theory from some examples of mainly audiovisual applications, in part borrowed from research on speech and image processing

Previous knowledge

Basic concepts of probability theory and of digital signal processing.

Identical courses

H05I9A: Stochastische signaal- en systeemanalyse

Onderwijsleeractiviteiten

Stochastic Signal and System Analysis: Lecture (B-KUL-H05I7a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

This is an overview of the topics that are covered:

  • probability theory: random variables, probability distributions, moments, multivariate distributions, functions of random variables, laws of large numbers, parametric estimation, maximum-likelihood estimation, entropy.
  • random processes: moments of random processes, differentiation, integration, ergodicity, the Poisson process, the Wiener process and white noise, stationarity, estimation, linear systems and random processes, power spectrum.
  • optimal filtering: minimum mean square error, bayesian parametric estimation, optimal finite-observation linear filters, Kalman filters.

Course material

Study cost: 11-25 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Parts of the book "Random processes for Image and Signal Processing" by E. R. Dougherty (SPIE/IEEE Press), extra material on Toledo and slides.

Format: more information

Nine lectures in class

Stochastic Signal and System Analysis: Exercises (B-KUL-H05I8a)

0.59 ECTS : Practical 10 Second termSecond term

Content

There are four exercise sessions, covering the most important parts of the course:

  • probability theory
  • parametric estimation, random processes: basics
  • random processes: stationarity, linear systems, power spectrum
  • optimal filtering

Course material

Assignments and solutions are available on Toledo.

Format: more information

There are four exercise sessions, supervised by a teaching assistant.

Evaluatieactiviteiten

Evaluation: Stochastic Signal and System Analysis (B-KUL-H25I7a)

Type : Exam during the examination period
Description of evaluation : Oral, Written
Type of questions : Open questions
Learning material : Course material, List of formulas, Calculator

Explanation

The questions consist of exercises that assess insight.

ECTS Technology for Microelectronics (B-KUL-H05J1A)

3 ECTS English 28 Second termSecond term

Aims

At the end of this course, the student has insight into the various technology steps and into the connection between technology and design.

Previous knowledge

The student has acquired the basic knowledge of semiconductor technology and electronic circuits, as covered for instance in the bachelor Electrical Engineering.

Order of Enrolment



SIMULTANEOUS (H05B3A) OR SIMULTANEOUS(H06A3A)


H05B3AH05B3A : Analoge en gemengde bouwblokken voor signaalverwerking
H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing


Is included in these courses of study

Onderwijsleeractiviteiten

Technology for Microelectronics: Lecture (B-KUL-H05J1a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

  • Introduction: from technology to design
  • Overview of the course and structuring Si substrate manufacture: Czochralski crystal growth
  • Sequence of steps: importance of repetition cycle Importance of yield (Yield)
  • The clean room Lithography summary, relation design - masks - pattern
  • Negative photoresist
  • Positive photoresist
  • Application of resist (+ adhesion problem)
  • Resist exposure and development issues with line definition
  • Mask alignatie imagers X-ray and e-beam lithography
  • Impurity Doping
  • Diffusion and etch equipment (ovens and ion implanter)
  • Resources for deposition
  • Oxidation process
  • Process control techniques
  • Principles of wet etch
  • Principles of dry (plasma) etching
  • Micromachining silicon thin film deposition
  • Vacuum systems
  • Evaporation
  • Sputtering
  • Electro Migration CVD techniques + Laser CVD and FIB circuit fabrication
  • Substrate aspects (epi vs. non-epi)
  • Transistor fabrication MOS and bipolar Impact technology (line width) to transisitor parameters
  • VT tuning and multi VT Floating gate memories
  • Impact of new devices on design
  • Polymers and transistors
  • Hybrid technology and chip interconnection techniques
  • Thin film on ceramic substrates
  • Thick film on ceramic substrates
  • Die bonding (eutectic - epoxy)
  • Wire bonding (thermo compression ball bond, ultrasonic bonding)
  • Beam lead bonding
  • Ball grid arreas (solder bumps, Au bumps) and flip chip bonding
  • Tape Automated Bonding (TAB)
  • Parallel gap welding
  • Printed circuit board
  • Introduction Electroless plating or Cu Electroplating or Cu Multilayer boards
  • New techniques: mircowiring, flex prints spuitgietechnieken for integrated enclosures
  • Surface mounting techieken soldering: bath, wave, reflow and wapour phase soldering, lead-free soldering and testing
  • Reliability, failure rate and lifespan curve
  • MTTF accelerated life tests (burn-in)
  • Sample testing and screen testing (eg. MIL-883)
  • More recent techniques
  • Cu / LOWK interconnects on silicon technology for multi-chip packaging, embedded passive components, optoelectronic interconnects
  • Mulitlayer interconnects in chip through plugs ITRS roadmap: to nano technology

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Slides & handbook (Introduction to microfabrication - 2nd edition, Sami Franssila)

Technology for Microelectronics: Exercises and Laboratory Sessions (B-KUL-H05J2a)

0.59 ECTS : Practical 10 Second termSecond term

Content

4 exercise sessions covering the topics of the lecture.

Course material

Available on Toledo

Evaluatieactiviteiten

Evaluation: Technology for Microelectronics (B-KUL-H25J1a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Reference work, Course material

Explanation

Exam: open , mature conversation on two themes from the syllabus

ECTS Antennas for PCBs, Microelectronics and Nanotechnology (B-KUL-H05K2A)

3 ECTS English 28 Second termSecond term Cannot be taken as part of an examination contract

Aims

The course involves the basic analysis of radiation and antennas. The fundamental goal is explicitly to point out the totally different way of thinking in the this field compared to basic circuit theory, where the wave behavior is not relevant. The student has to be able to characterize radiation phenomena, based on their properties. He has to know the basic terminology in radiation and has to be able to give a schematic overview of different types of antennas and their working mechanisms.

Previous knowledge

Students are assumed to be educated (at a basic level) in the fields of

  • electromagnetic fields and waves in general (for example H01M1)
  • transmission lines and S-parameters
  • circuit theory

Order of Enrolment



(SIMULTANEOUS (H05C9A) OR SIMULTANEOUS (H09J4A))


H05C9AH05C9A : Bouwblokken voor telecomsystemen
H09J4AH09J4A : Building Blocks for Telecom Systems


Is included in these courses of study

Onderwijsleeractiviteiten

Antennas for PCBs, Microelectronics and Nanotechnology: Lecture (B-KUL-H05K2a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

The course consists of 10 sessions:
Session 1: Introduction and terminology
Session 2: Basic parameters and their properties
Session 3: Electric and magnetic dipole, incremental sources
Session 4: Wire antennas
Session 5: Computational Electromagnetics in antenna design
Session 6: Array Antennas and beam steering
Session 7: Radiation Measurements
Session 8: Microstrip, planar, quasi 3D, and 3D antennas
Session 9: Electrically small antennas
Session 10: Antennas: selected overview: resonant antennas, traveling wave antennas, Yagi antennas, helical antennas

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Course slides with detailed textual explanation

Antennas for PCBs, Microelectronics and Nanotechnology: Exercises and Practical Training (B-KUL-H05S9a)

0.59 ECTS : Practical 10 Second termSecond term

Content

There are four seminars chronologically covering all aspects of the material studied during the sessions.

Evaluatieactiviteiten

Evaluation: Antennas for PCBs, Microelectronics and Nanotechnology (B-KUL-H25K2a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Closed questions
Learning material : List of formulas

Explanation

The exam questions involve theoretical aspects and exercises.

ECTS Telecommunications and Security Management (B-KUL-H05S2A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract
Sallouha Hazem (coordinator) |  Sallouha Hazem |  N. |  Singelée Dave (substitute)

Aims

  • Becoming familiar with ICT project management with emphasis on tendering process for telecommunications infrastructure 
  • Becoming familiar with concepts around security management in an organization

Previous knowledge

Basic knowledge of analog and digital communication

Knowledge on TCP/IP network protocol layers and related communications hardware

Is included in these courses of study

Onderwijsleeractiviteiten

Telecommunications and Security Management: Lecture (B-KUL-H05S2a)

2.41 ECTS : Lecture 18 First termFirst term
Sallouha Hazem |  N. |  Singelée Dave (substitute)

Content

  • Project management (tendering procedure, risk management) as applied to telecommunication networks (both voice and data) with emphasis on hardware, and to security.
  • Understanding of company view on telecommunication and security systems, both from a technical and a socio-technical point of view.
  • Lectures on concepts are complemented with guest lectures by speakers from industry.

Course material

Materials via Toledo

Format: more information

  • Mixture of regular lectures and guest lectures

Telecommunications and Security Management: Exercises and Practical Training (B-KUL-H05S3a)

0.59 ECTS : Assignment 10 First termFirst term
Sallouha Hazem |  N. |  Singelée Dave (substitute)

Content

  • Teams (2-3 students) will be given a scenario in which they need to assess the needs of a company in relation to deployment of telecommunications systems and/or security, and develop the tendering process.
  • The students work on the assigned scenario during the exercise sessions. Next to the supervised slots, the students are expected to perform self-study in between the exercise sessions, such as reading of related literature as provided by the lecturers.
  • Assignment is to be presented in the final class of the semester; such that students can learn from each other.

Course material

Materials via Toledo

Format: more information

Practical sessions take place in a class room (students bring their own laptop) or in a PC class, during which they work on their group assignment, supervised by a TA or lecturer.

Evaluatieactiviteiten

Evaluation: Telecommunications and Security Management (B-KUL-H25S2a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Report, Presentation, Participation during contact hours
Type of questions : Open questions
Learning material : None

Explanation

50% assignment, 50% exam

The aim of the oral exam is to assess the students’ engagement with the content of the lectures and guest lectures.

Information about retaking exams

100% exam; mark of the assignment does not get transferred, and also no new assignment has to be performed.

ECTS Electromagnetic Propagation (B-KUL-H05T0A)

3 ECTS English 28 Second termSecond term Cannot be taken as part of an examination contract

Aims

At the end of this course, the student will be able to explain all wave propagation mechanisms from ELF to the highest frequencies.

Previous knowledge

Basic course electromagnetics, e.g., H01M1A  (Electromagnetic Waves)

Identical courses

H0T75A: Elektromagnetische propagatie

Is included in these courses of study

Onderwijsleeractiviteiten

Electromagnetic Propagation: Lecture (B-KUL-H05T0a)

2.41 ECTS : Lecture 18 Second termSecond term

Content

Topics discussed:

  • normal atmospheric refraction
  • reflections
  • diffraction
  • ionospheric propagation
  • surface wave propagation
  • ELF-VLF propagation
  • ducting
  • static, mobile and MIMO channel models
  • atmospheric disturbances (rain, snow and fog)

Course material

Copies of the slides are available on a secure web site (with recommended literature).

They can be ordered on B/W print during the first lecture.

Format: more information

Normal lectures, with examples worked out during the exercises.

Electromagnetic Propagation: Exercises and Practical Training (B-KUL-H05T1a)

0.59 ECTS : Practical 10 Second termSecond term

Content

4 exercise sessions are planned:

1) Communication systems

2) Reflections, diffractions and ionosphere

3) Surface waves and influence on positioning systems

4) Channel modelks and atmosphere

 

Course material

Same as for the lectures.

Evaluatieactiviteiten

Evaluation: Electromagnetic Propagation (B-KUL-H25T0a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Calculator

Explanation

Closed book exam.

ECTS Satellite Navigation and Communications (B-KUL-H05T6A)

3 ECTS English 22 Second termSecond term Cannot be taken as part of an examination contract

Aims

This course focuses on advanced topics in and beyond contemporary satellite navigation systems, specifically to:

  • Understand how Global Navigation Satellite Systems (GNSS) such as GPS or Galileo work, including their satellites, ground segment, and receivers.
  • Apply general concepts of mathematics, physics and engineering (linear algebra, calculus, estimation theory, astrodynamics) to the practical problems of radionavigation: acquire the electromagnetic signals and compute position and time with them.
  • Understand measurement errors: satellite orbit and clock estimation, ionosphere, troposphere, multipath, and receiver contributions.
  • Have an overview of the radiolocation ecosystem, including system providers, industry, technology trends (hybridization, signals of opportunity, assisted GNSS), challenges (ubiquitous location, power consumption, authentication, integrity, accuracy), standards, and future applications (autonomous cars, UAVs, wearables, IoT…).
  • Experiment with a MATLAB GNSS software defined radio (SDR) receiver and real data.

At the end, the students should be able to:

  • Understand how GPS/GNSS work in some depth, and have a general understanding of satellite technologies and radiolocation, including concepts applicable to other fast-growing sectors such as mobile network location or satellite mega constellations.
  • Understand the technology trends and challenges in the satnav sector. 
  • Develop satnav receiver algorithms and applications and analyse their performance.

Previous knowledge

Basic knowhow of digital communications and antennas are assumed: 

  • Electromagnetism and electromagnetic wave propagation
  • Components of communication systems: transmitter and receiver blocks, synchronization and equalization, Forward Error Correcting coding and decoding
  • Phase and amplitude modulation techniques
  • Standard multiple access techniques including FDMA, TDMA, CDMA

Is included in these courses of study

Onderwijsleeractiviteiten

Satellite Navigation and Communications (B-KUL-H05T6a)

3 ECTS : Lecture 22 Second termSecond term

Content

The course consists of 9 lectures following this (tentative) schedule: 

  • Introduction: Radionavigation history, trilateration and other radionavigation concepts (TOA, TDOA, Doppler), TOC of the course.
  • Satellite Navigation Systems: Constellation design, satellites, launchers, ground segment, operations, current systems (GPS, Galileo, GLONASS, Beidou, etc.), augmentations.
  • Orbits and Reference Systems: Basics (Kepler, Newton), Keplerian orbital parameters, inertial and non-inertial systems, datums.
  • Signals: Media access (CDMA, FDMA), signal modulations (BPSK, BOC), link budget, carrier frequency properties, coding, error correction techniques, data structure.
  • Measurement errors: Satellite (clock, orbits, biases), signal propagation (ionosphere, troposphere, multipath), and receiver errors (sampling, quantization, biases, others).
  • Receivers i: Antennas and RF front ends, signal acquisition, signal tracking, receiver practical implementations (ASIC, FPGA, SDR).
  • Receivers ii: Position estimation, authentication, high accuracy.
  • Industry and technology trends: Satnav ecosystem and value chain, hybridization, signals of opportunity, assisted GNSS, authentication, applications.
  • Guest Speaker / backup session.

In addition there are (tentatively) 4 lab sessions and presentation (The on-campus activities are TBC. They may be removed or replaced by off-campus activities):

  • Overview of MATLAB SDRs. First experiments with existing samples.
  • Data grabbing on campus and processing. 
  • Data processing and optimization. Preparation of presentation. 
  • Group presentations.

The lab sessions will consist of getting familiar with the MATLAB SDRs using RF front ends provided in the lab to get your own samples, processing them with the MATLAB SDR, and reporting the results in the written assignment and presentation. Students will work in groups (size and number TBC depending on the number of students). Each group will grab RF samples using RF front ends provided by the lab. They will process the samples and calculate a position with them using the MATLAB SDRs available. They will prepare a presentation describing all the steps performed: data grabbing, acquisition stage, tracking stage (if used), and position, velocity and timing solution (NB: how to measure the accuracy of your solution against a ‘true solution’, and the ‘true solution’ accuracy, is part of the work). Optionally, groups can focus their lab work on one or more aspects in the receiver chain and develop them in more depth. The results of the work will be compiled into a presentation (power point, pdf or similar), to be delivered in 10-15 minutes in the last session. The presentation slides must be self-standing and include the relevant results and conclusions. 

Course material

For each course, specific material will be provided, consisting of:

  • handouts of the presented slides (which are made available also for courses not given in the format of slide presentation)
  • where necessary overview article(s) on the discussed topic
  • occasionally extra reading material for students lacking specific background

 

Language of instruction: more information

The courses will be brought in English. 

Evaluatieactiviteiten

Evaluation: Satellite Navigation and Communications (B-KUL-H25T6a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Presentation
Type of questions : Multiple choice, Closed questions
Learning material : List of formulas, Calculator

Explanation

80% individual closed-book test: Duration: around 1h. Short problems and questions with multiple answers based on the lectured material.

20% laboratory work and presentation.The evaluation of the laboratory work (20% of the total) will be based on the quality of the results reported in the slides (methodology, clarity, completeness, performance, additional insights), and quality of the oral presentation (delivery, structure, Q&A). 

Information about retaking exams

The second exam opportunity:

100% written exam without possiblity to transfer points from the first exam.

ECTS 6G Communication Networks (B-KUL-H05T7A)

3 ECTS English 28 First termFirst term Cannot be taken as part of an examination contract

Aims

This course focuses on selected enablers of future 6G communication systems. Specifically, the students will

  • Apply general concepts of mathematics, physics and engineering (linear algebra, calculus, statistics, electromagnetism) to the practical problems of radiocommunication and information transmission.
  • Understand the key principles of cellular networks in general, and of future 6G networks specifically; cellular connectivity and networks, their architecture and infrastructure.
  • Understand the principles of radio signals, including their power, modulations, and carrier frequencies.
  • Understand measurement and communication error sources and modeling: propagation, including ionosphere and troposphere, fading and multipath, and receiver contributions.
  • Understand future trends and reflect critically on the technical feasibility.

At the end, the students should be able to:

  • Understand the state of the art communication principles and main concepts of 6G technologies and apply them to research and development of next generation of communication networks.
  • Have an overview of the 6G ecosystem, including system providers, industry, technology trends, challenges, standards, and present and future applications.
  • Critically analyze the scientific trends and map them with the societal trends and needs.

Previous knowledge

  • Basic knowledge of linear algebra, calculus and statistics is assumed.
  • Basic knowledge of electromagnetism and electromagnetic wave propagation and equipment is assumed.

Order of Enrolment



SIMULTANEOUS( H0E89A )


H0E89AH0E89A : Mobile Networks

Is included in these courses of study

Onderwijsleeractiviteiten

6G Communication Networks: Lecture (B-KUL-H05T7a)

2.4 ECTS : Lecture 20 First termFirst term

Content

10 sessions are planned on advanced topics related to 6G. For instance:

  • Introduction to 6G: Use-cases, Performance requirements, Roadmap;
  • 6G spectrum: sub 6 GHz, millimeter waves, THz;
  • 6G cell-free networks;
  • AI and ML in 6G;
  • Intelligent Reflective Surfaces;
  • Global 6G coverage: Non-Terrestrial Networks (NTN);
  • Global 6G coverage: underwater communications;
  • Integrated Sensing and Communications (ISAC);
  • 6G for society;
  • Speaker from industry

Course material

Specific material will be provided, consisting of:

  • handouts of the presented slides (which are made available also for lectures not given in the format of slide presentation)
  • where necessary overview article(s) on the discussed topic
  • occasionally extra reading material for students lacking specific background

Format: more information

Discussion - Guest lecture - Webinar

The format will be lectures, possibly web lectures or recordings or guest lectures as seen fit for the content.

6G Communication Networks: Exercises (B-KUL-H0O62a)

0.6 ECTS : Assignment 8 First termFirst term

Content

There will be four sessions and presentation:

  • Discussion of four technical papers on 6G:
    • Session 1: two papers (of a high and low quality) will be discussed and compared. What does make those paper different? Key components of a solid research publication.
    • Session 2: Discussion of a recent high-quality paper dedicated to the selected lecture topics (e.g., Non-Terrestrial Networks, Intelligent Reflective Surfaces, Cell-free networks, Integrated sensing and communications, THz communications, Underwater communications, Machine Learning).  
  • Session 3: Flipped classroom: pre-watched academic tutorial on YouTube with a following discussion.
  • Session 4: Online presentation (15 min per person/group) of a pre-assigned research paper. The presentation slides must be self-standing and include the relevant methods, results, and conclusions. 

Format: more information

Discussion - Group assignment - Literature review - Presentation - Webinar

Evaluatieactiviteiten

Evaluation: 6G Communication Networks (B-KUL-H25T7a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material, Reference work

ECTS Master's Thesis (B-KUL-H05U4A)

24 ECTS English 720 Both termsBoth terms Cannot be taken as part of an examination contract Cannot be taken as part of a credit contract
Reynaert Patrick (coordinator) |  N.

Aims

The student
… has initiated an original research project (original in the sense that the student has generated (partly) new knowledge) .
... has acquired state of the art knowledge on the subject of the research project.
... formulates a correct and clear problem statement.
... is up to date with recent findings in the area of the subject of the research project and can assess their relevance for the solution of the problem
... designs a research plan, using the best available techniques (based on information found in scientific literature).
… analyses and interprets the results obtained.
… has a critical attitude in the interpretation of the results obtained.
… takes into account the need for optimisation  (context and boundary conditions) and the existence of uncertainties that have an impact on the boundary conditions.
… can outline the results of the project in a coherent, correct and clear way using a correct scientific language and a clear lay-out of the text, citations, tables and figures meeting all formal requirements…. 
… has a fair academic attitude towards referencing sources.
… brings the project to a close in a set of conclusions situating the results obtain in the state of the art context
… can present the results of the project, taking into consideration important presentation skills such as the outline of the scientific context, a coherent structured presentation, correct language, respect for timing.
… can answer in a scientific correct language to questions from both fellow students and researchers.
… assumes a critical, reflective learning attitude, committed  to the project, independent and if appropriate a good team player.

Previous knowledge

The student should have taken all the courses of the core education, and take or have taken suffiient courses of the specialised technical education such that sufficient competences have been acquired to do the research work. In consultation with the promotor is may be decided that some specific courses should be taken in order to get some specific expert knowledge.

Order of Enrolment

72

Identical courses

H05F9A: Masterproef

Is included in these courses of study

Onderwijsleeractiviteiten

Master's Thesis (B-KUL-H05U4a)

24 ECTS : Master's thesis 720 Both termsBoth terms
N.

Content

The precise content of the master thesis depends on the topic agreed upon, but in any case it will be a research or design work that takes place either in one of the research laboratories to which the professors of the master programme are connected, or in an industrial environment.

Evaluatieactiviteiten

Evaluation: Master's Thesis (B-KUL-H25U4a)

Type : Continuous assessment without exam during the examination period
Description of evaluation : Report, Presentation, Process evaluation

Explanation

A master thesis is evaluated by a jury of at least four persons: the promotor, the daily supervisor, and two or more assessors. The evaluation is based on three aspects:
1. The process: the work performed during the year (independence, critical sence, inventivity, creativity, difficulty)
2. The product: the final result and/or the text (scientific content, style, language, readability, structure)
3. The presentation and the oral examination (style, language, strcuture, completeness, timing) 
More information can be found on the student website of the master programme under the heading 'master thesis'.

ECTS Capita selecta ingenieurswetenschappen I.1. (Athens / Summer Course) (B-KUL-H05U5A)

3 studiepunten Nederlands 30 Eerste semesterEerste semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

 

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen I.1. (Athens / Summer Course) (B-KUL-H05U5a)

3 studiepunten : College 30 Eerste semesterEerste semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen I.1. (Athens / Summer Course) (B-KUL-H25U5a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.

Toelichting bij herkansen

 

ECTS Capita selecta ingenieurswetenschappen I.2. (Athens / Summer Course) (B-KUL-H05U6A)

3 studiepunten Nederlands 30 Tweede semesterTweede semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen I.2. (Athens / Summer Course) (B-KUL-H05U6a)

3 studiepunten : College 30 Tweede semesterTweede semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen I.2. (Athens / Summer Course) (B-KUL-H25U6a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.

Toelichting bij herkansen

 

ECTS Capita selecta ingenieurswetenschappen II.2. (Athens / Summer Course) (B-KUL-H05U7A)

3 studiepunten Nederlands 30 Tweede semesterTweede semester Uitgesloten voor examencontract
Smets Ilse (coördinator) |  N.

Doelstellingen

Inzicht verschaffen in een onderwerp binnen de ingenieurswetenschappen door middel van deelname aan een internationale uitwisseling (ATHENS) of een op voorhand door de programmadirecteur goedgekeurde ‘summer course’. Voor dit opleidingsonderdeel volgt de student een opleidingsonderdeel in het buitenland in het kader van het ATHENS-uitwisselingsprogramma  of een ‘summer course’, mits de programmadirecteur hiervoor op voorhand zijn akkoord heeft gegeven.

De student mag maximaal 1 keer per academiejaar en 2 keer tijdens de masteropleiding deelnemen aan een ATHENS-week. Deelname aan ATHENS is enkel mogelijk na applicatie via de faculteit en selectie door het ATHENS-netwerk. Meer informatie.

 

Begintermen

De kennis en attitudes zoals aangebracht in de bachelor ingenieurswetenschappen.

De student moet voldoen aan de vereiste basiskennis (prerequisites) van het ATHENS-vak dat hij kiest, zoals aangegeven in de course catalogue op de ATHENS inschrijvingswebsite.

Plaats in het onderwijsaanbod

Onderwijsleeractiviteiten

Capita selecta ingenieurswetenschappen II.2. (Athens / Summer Course) (B-KUL-H05U7a)

3 studiepunten : College 30 Tweede semesterTweede semester
N.

Inhoud

Afhankelijk van het opleidingsonderdeel gekozen en toegekend in de buitenlandse instelling na akkoord met de uitwisselingsverantwoordelijke.

Evaluatieactiviteiten

Evaluatie: Capita selecta ingenieurswetenschappen II.2. (Athens / Summer Course) (B-KUL-H25U7a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Medewerking tijdens contactmomenten

Toelichting

Dit opleidingsonderdeel wordt geëvalueerd volgens de regels en gebruiken van de gastinstelling waarmee de uitwisseling is gebeurd. De KU Leuven zet deze resultaten om naar PASS/FAIL.
Voor ATHENS-vakken worden, zoals alle andere vakken, in het ISP opgenomen in het academiejaar waarin ze gevolgd zijn.
‘Summer courses’ kunnen enkel gevalideerd worden, indien ze door de uitwisselingsverantwoordelijke voorafgaandelijk goedgekeurd zijn. De student neemt het vak op in het ISP in het academiejaar onmiddellijk volgend op de Summer Course.

Conform het beleid van het ATHENS-netwerk wordt voor ATHENS-cursussen geen 2e examenkans georganiseerd.

Toelichting bij herkansen

 

ECTS Bedrijfservaring: Elektrotechniek / Industrial Experience: Electrical Engineering (B-KUL-H05W9A)

3 studiepunten Nederlands 60 Eerste semesterEerste semester Uitgesloten voor examencontract Uitgesloten voor creditcontract

Doelstellingen

Het doel van deze bedrijfservaring is kennis maken met de industriële wereld en het opdoen van relevante ervaring. Door in het bedrijf mee te werken in een groep, leert de student de gebruikte methodes binnen het bedrijf kennen en verkrijgt hij een beter inzicht in de praktische aspecten van het bedrijfsleven. Aldus wordt de overgang van de grondige theoretische opleiding, die de student aan onze universiteit geniet, naar de beroepsloopbaan vergemakkelijkt.

Begintermen

Normaal wordt verwacht dat de student deze stage uitvoert tijdens het zomerverlof tussen de eerste en de tweede fase van de masteropleiding. In uitzonderlijke gevallen kan deze ook uitgevoerd worden na het bekomen van een bachelordiploma. De stageverantwoordelijke en de optiecoördinator oordelen samen of de student voldoende voorkennis bezit.

Volgtijdelijkheidsvoorwaarden



(SOEPEL (H09J6A) OF SOEPEL (H09I0A)) EN (SOEPEL (H05F1A) OF SOEPEL (H05F3A)) EN (SOEPEL (H06A3A) OF SOEPEL (H05B3A)) EN (SOEPEL (H05D3A) OF SOEPEL (H05D5A))


H09J6AH09J6A : Design of Digital Platforms
H09I0AH09I0A : Ontwerp van digitale platformen
H05F1AH05F1A : Digital Signal Processing for Communications and Information Systems
H05F3AH05F3A : Digitale signaalverwerking voor communicatie- en informatiesystemen
H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing
H05B3AH05B3A : Analoge en gemengde bouwblokken voor signaalverwerking
H05D3AH05D3A : Computer Architectures
H05D5AH05D5A : Computerarchitecturen

Onderwijsleeractiviteiten

Bedrijfservaring: Elektrotechniek / Industrial Experience: Electrical Engineering (B-KUL-H05W9a)

3 studiepunten : Stage 60 Eerste semesterEerste semester

Toelichting werkvorm

Alle informatie is te vinden op de stagepagina van de opleiding. Deze pagina wordt regelmatig aangepast.

Evaluatieactiviteiten

Evaluatie: Bedrijfservaring: Elektrotechniek / Industrial Experience: Electrical Engineering (B-KUL-H25W9a)

Type : Permanente evaluatie zonder examen tijdens de examenperiode
Evaluatievorm : Verslag, Presentatie, Procesevaluatie

Toelichting

De student dient een verslag in en geeft een presentatie voor een jury. Meer details over de procedure en de vereisten voor het verslag en de presentatie vind je op de stagepagina van de opleiding.

 

Toelichting bij herkansen

Enkel wanneer de student tijdens de stage zelf niet voldoet aan de minimaal voorgeschreven vereisten, zal hij/zij niet slagen. Een tweede examenkans zou een volledig nieuwe stage impliceren, wat binnen eenzelfde jaar onmogelijk is.

ECTS Analog and Mixed-Signal Electronics for Signal Processing (B-KUL-H06A3A)

6 ECTS English 56 First termFirst term
Gielen Georges (coordinator) |  Dehaene Wim |  Gielen Georges

Aims

This course describes the most important analog building blocks as used in electronic systems for signal processing. Based on the operating principle of these blocks, the goal is to understand the most relevant properaties for systems and signal processing applications in telecommunications, multimedia, biomedical applications, computing, etc.

Previous knowledge

It is strongly advised to have succesfully completed courses H08T5A - "Basic electronic circuits" and H01M8a - "Systeemtheorie en regeltechniek", or equivalent.

Identical courses

H05B3A: Analoge en gemengde bouwblokken voor signaalverwerking

Is included in these courses of study

Onderwijsleeractiviteiten

Analog and Mixed-Signal Electronics for Signal Processing: Lecture (B-KUL-H06A3a)

4.83 ECTS : Lecture 36 First termFirst term

Content

1.  Applications of analog interface circuits in electronic products:
Applications of analog circuits in telecommunications, control, computing, biomedical applications, etc.

2. Fundamental performance limits in analog circuits:
Noise - distortion - dynamic range - signal-to-noise ratio; fundamental relationships between power, speed and accuracy

3. Analog filters:

 

Filter types: LP, HP, BP and BR; continuous time and discrete time filters; translating filter specifications in transfer functions: Butterworth, Chebyshev, Cauer, Bessel; filter synthis (b.m.o. software programme); filter structures and their properties: passive & active, continous time and discrete time

 

4. Analog-to-digital and digital-to-analog converters:
Principles and properties (resolution, linearity, ENOB); sampling and quantisation; architectures: Nyquist-rate digital-to-analog converters; Nyquist-rate analog-to-digital converters; oversampling (Delta-Sigma) converters; building blocks: S&H/T&H

5. Phase-locked loop and oscillators:
Principles and properties (acquisition/lock, phase noise); basic architecture and building blocks; applications: up/downconversion, data recovery, frequency synthesis; basic principles oscillators.

6. DC-DC conversion:
Principles of power supplies: linear regulators and switched-mode converters, both capacitive and inductive

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

Syllabus from the lecturer.

Analog and Mixed-Signal Electronics for Signal Processing: Exercises and Labs (B-KUL-H06A4a)

1.17 ECTS : Practical 20 First termFirst term

Content

Exercises sessions accompanying the course lectures.

Course material

Exercise assignments and example solutions are made available through Toledo.

Format: more information

Guided exercise sessions.

Evaluatieactiviteiten

Evaluation: Analog and Mixed-Signal Electronics for Signal Processing (B-KUL-H26A3a)

Type : Exam during the examination period
Description of evaluation : Written
Type of questions : Open questions
Learning material : Calculator, List of formulas

Explanation

Oral exam with extensive written preparation. Closed book (i.e. course material cannot be used during the exam, except for the formularium).

If due to force majeure the Faculty decides that an oral exam with long written preparation is not allowed, then the exam will be entirely written without oral exam. Such change will be announced via Toledo in due case.

Information about retaking exams

Same format as for the first exam.

ECTS Dutch Language and Cultures (B-KUL-H06B4A)

3 ECTS English 40 First termFirst term Cannot be taken as part of an examination contract
De Wachter Lieve (coordinator) |  N. |  De Wachter Lieve (substitute) |  Boelaert Liese (cooperator) |  Van Aken Stef (cooperator)

Aims

The main aim of this course is to help students acquire basic communicative skills in Dutch (level A1 of the Common European Framework). The course deals with the basic grammar notions and language functions and aims at the mastering of approximately 800 highly frequent words of Dutch. A lot of attention goes to culture with various lectures about Belgium. The course provides extensive practice in listening, reading, speaking and writing. 

Onderwijsleeractiviteiten

Dutch Language and Cultures (B-KUL-H06B4a)

3 ECTS : Lecture 40 First termFirst term
N. |  De Wachter Lieve (substitute) |  Boelaert Liese (cooperator) |  Van Aken Stef (cooperator)

Course material

R. Devos en H. Fraeters, Vanzelfsprekend, Leuven (Acco), 2008. The multimedia course materials 'Vanzelfsprekend' offer video, audio CDs, texts and exercises, very frequently used language functions and approximately 800 highly frequent Dutch words. The material also includes a lot of cultural information on Belgium and Flanders.

Evaluatieactiviteiten

Evaluation: Dutch Language and Cultures (B-KUL-H26B4a)

Type : Exam outside of the normal examination period

Explanation

There will be a test (writing, speaking, listening and reading) at the end of the course as well as a number of assignments during the course.

ECTS MEMS and Microsystems (B-KUL-H06C9A)

3 ECTS English 28 First termFirst term

Aims

This course aims at bringing insight to the student on the possiblities of creating microstructures, mainly based upon the techniques normally used in standard IC manufacturing. It highlights several MEMS devices.

Previous knowledge

No specific prerequisites are mandatory, beside necessary basis to disciplines as offered in the introductory courses H01M3A Elektronische basisschakelingen and ; H06F0A Semiconductor devices and decent knowledge of basic physics and mechanics. Some know-how on electronic circuits is also required.

Is included in these courses of study

Onderwijsleeractiviteiten

MEMS and Microsystems: Lecture (B-KUL-H06C9a)

2.41 ECTS : Lecture 18 First termFirst term

Content

This course gives an overview of the recent developments in the creation of microelectromechanical structures (MEMS) in silicon. Both sensors and actuators are discussed. Main focus is towards miniaturisation. Finally, some examples of complete operational systems are shown, and problems such as interconnection, packaging and reliability come under focus. Introduction MST - MEMS - Micromachines Motivation: - miniaturisation, portability, monolithicity Micromaching Bulk micromachining Surface micromachining Spark erosion (EDM) Dry etching (DRIE) Wafer bonding techniques CAD fo MEMS Sensors Pressure sensors, flow sensors, velocity sensors and accelerometers Radiation sensors Optical sensors and CCD structures Hall effect sensors Chemical sensoren Actuators Drive mechanisms Micropumps and microfluidics Micromotors X-Y manipulators Systems for probing Atomic force microprobes (AFM) Diskette heads Integrated systems Signal treatement on the MEMS-chip Strategies for intelligent sensors and systems Packaging aspects Interconnectiesystems, assembly and packages Realiability aspects.

Course material

Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

S. Fransilla: Introduction to Microfabrication (suggested to buy)
G. Kovacs: Micromachined Transducers
N. Maluf: An Introduction to Microelectromechanical Systems Engineering
S. Senturia: Microsystem Design

MEMS and Microsystems: Exercises and Laboratory Sessions (B-KUL-H06D0a)

0.59 ECTS : Assignment 10 First termFirst term

Content

This course gives an overview of the recent developments in the creation of microelectromechanical structures (MEMS) in silicon. Both sensors and actuators are discussed. Main focus is towards miniaturisation. Finally, some examples of complete operational systems are shown, and problems such as interconnection, packaging and reliability come under focus. Introduction MST - MEMS - Micromachines Motivation: - miniaturisation, portability, monolithicity Micromaching Bulk micromachining Surface micromachining Spark erosion (EDM) Dry etching (DRIE) Wafer bonding techniques CAD fo MEMS Sensors Pressure sensors, flow sensors, velocity sensors and accelerometers Radiation sensors Optical sensors and CCD structures Hall effect sensors Chemical sensoren Actuators Drive mechanisms Micropumps and microfluidics Micromotors X-Y manipulators Systems for probing Atomic force microprobes (AFM) Diskette heads Integrated systems Signal treatement on the MEMS-chip Strategies for intelligent sensors and systems Packaging aspects Interconnectiesystems, assembly and packages Realiability aspects.

Course material

G. Kovacs: Micromachined Transducers
N. Maluf: An Introduction to Microelectromechanical Systems Engineering
S. Senturia: Microsystem Design

Evaluatieactiviteiten

Evaluation: MEMS and Microsystems (B-KUL-H26C9a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Oral, Presentation
Type of questions : Open questions
Learning material : Course material

Explanation

The seminar, performed at the end of the excersise sessions, is quoted for  20% of the total of the points for this course

Exam : oral , open discussion with the tutor, open book, on two themes of the course

ECTS Reliability and Yield for Micro- and Nanoelectronic Components (B-KUL-H06E4A)

3 ECTS English 28 Second termSecond term

Aims

Engineering education is often oriented towards the design of new products and technologies. How products or technologies fail, the effects and the physics of failure and manufacturing aspects such as yield are often neglected.

The purpose of this course is to make future engineers aware of the growing importance of quality, reliability and manufacturing aspects in integrated electronic technology. Also, it is aimed to make the students familiar with basic concepts, tools and methods used in the field of reliability and yield. Finally, the role and the impact of defects in semiconductor technology are emphasized.

At the end of the course the students should have acquired the following knowledge and skills:
- the student is able to explain the basic concepts and definitions of reliability science, such as reliability, failure, failure mode, failure mechanism, intrinsic and extrinsic failures, failure rate, MTTF, bathtub-curve, …
- the student knows the basics of the mathematics and statistics of reliability science: cumulative failure functions, reliability function, failure density function, failure distributions such as exponential, Weibull, normal and lognormal, …
- the student is able to process failure data: ranking, censoring and fitting of failure data, use of maximum likelihood extraction for failure distributions, …
- the student knows the principles of accelerated reliability testing, screening, fatigues testing, …
- the student knows the basic concepts and definitions of yield in semiconductor manufacturing and yield models like Poisson yield, Murphy yield, Seeds yield and Gamma yield
- the student understands the elements that cause yield loss, such as design, process and defect related effects and can make yield analysis
- the student has obtained insight in the relationship between yield and early failure reliability and the relation with latent defects
- the student has obtained a thorough knowledge of one of the 5 classes of failure mechanisms in micro- and nano-electronic technologies: A) Oxide failure mechanisms, B) Time-Dependent-Dielectric-Breakdown, C) Mass transport failure mechanisms, D) Electrostatic discharge and E) Variability and reliability of VLSI technologies

Previous knowledge

Necessary basics are offered in the introductory courses H08T5A Electronic Components, Circuits and Sensors, H06F2A Semiconductor Physics and H06F0B Semiconductor Devices

The course builds further on the courses H06F0B Semiconductor Devices, H06G4A Materials Physics and Technology for Nanoelectronics and H06G0A Technology of Integrated systems

Order of Enrolment



SIMULTANEOUS (H06G4A)


H06G4AH06G4A : Materials Physics and Technology for Nanoelectronics

Identical courses

H03O3A: Betrouwbaarheid en yield van geïntegreerde elektronische componenten

Onderwijsleeractiviteiten

Reliability and Yield for Micro- and Nanoelectronic Components: Lecture (B-KUL-H06E4a)

2.4 ECTS : Lecture 18 Second termSecond term

Content

The first part of the course will be taught through 5-6 classical  lectures:

- The basic concepts and methods of reliability are introduced: basic definitions and terminology, the bathtub-curve, the impact of scaling, classification of failure mechanisms, statistical methods, reliability functions and mathematics, failure rate, system reliability, active redundancy, reliability distribution functions, analysis of failure data (ranking, censoring, maximum likelihood fitting), accelerated testing, screening, reliability prediction, …

- The basic concepts of yield in semiconductor technology are discussed: definitions of yield, link between yield and cost, mechanisms of yield loss, yield models, defect clustering, critical chip area, defect models, yield elements, design, redundancy, structural yield problems, defect related yield, contamination, link between yield and reliability, latent defects, …

The second part of the course will be taught by the students themselves, where the main failure mechanisms in integrated electronic components are treated in detail: A) Oxide failure mechanisms, B) Time-Dependent-Dielectric-Breakdown, C) Mass transport failure mechanisms, D) Electrostatic discharge and E) Variability and reliability of VLSI technologies

This second part is taught by supervised self-study where the students are asked to study independently one failure mechanism of choice, using existing texts and papers, and to present his/her study to the other students under supervision of the teacher

Course material

Papers, copies of textbook material, handouts and slides are distributed through Toledo

Format: more information

The first part of the course will be taught through 5-6 classical  lectures

The second part is taught by supervised self-study where the students are asked to study independently one failure mechanism of choice and to present his/her study to the other students under supervision of the teacher

Reliability and Yield for Micro- and Nanoelectronic Components: Exercises and Labs (B-KUL-H06E5a)

0.6 ECTS : Assignment 10 Second termSecond term

Content

There are 5 exercise sessions planned

Two exercise sessions are used for the supervision of the preparation of the group presentation about one of the failure mechanisms studied in the course

One exercise session is used for exercises on the statistical methods used for reliability data analysis

Two exercise sessions are used to learn to make a calculation of an accelerated testing experiment. For these 2 exercise sessions, a brief written report is requested

Course material

Papers, copies of textbook material, handouts and slides are distributed through Toledo

Format: more information

Students are guided to present one of the failure mechanisms

Students are practicing some parts of the course

Evaluatieactiviteiten

Evaluation: Reliability and Yield for Micro- and Nanoelectronic Components (B-KUL-H26E4a)

Type : Partial or continuous assessment with (final) exam during the examination period
Description of evaluation : Written, Presentation, Participation during contact hours
Type of questions : Open questions
Learning material : Course material, Calculator, Reference work

Explanation

The theoretical lectures will be examined using a written open book exam. This part is scored on 50% of the total score. This exam probes for insights and consists of a few practical applications of the methodologies discussed during the lectures and the exercise sessions.

For the part of the course with the presentations after supervised self-study, the quality of the presentations on the chosen topic and the participation and activity during the supervision sessions and the presentations will be scored for the other 50% of the total score.

Information about retaking exams

The score of the group presentation is kept, the score of the exam itself can be changed by the second exam chance.

ECTS Semiconductor Physics (B-KUL-H06F2A)

3 ECTS English 28 First termFirst term

Aims

The purpose of this course is to provide the necessary basics of solid state physics in order to allow the student to well understand and describe the operation of present and future semiconductor devices. In view of the continuous scaling of such components, a very strict application of the principles of quantum mechanics becomes mandatory. The focus of the course is on acquiring physical insight in the properties of semiconduc tors. This course is the indispensable basis for other courses such as Semiconductor devices, advanced nanoelectronic devices, electronic and opto-electronic systems.

Previous knowledge

Physics and Mathematics
Basic principles of Quantum Physics
Atom theory

Identical courses

H02V6A: Halfgeleiderfysica

Is included in these courses of study

Onderwijsleeractiviteiten

Semiconductor Physics: Lecture (B-KUL-H06F2a)

2.4 ECTS : Lecture 18 First termFirst term

Content

Introduction : basic principles of quantum mechanics and of the periodic structure of crystalline solid state materials, reciprocal lattice
Band theory of solid state materials : Schrödinger equation; consequences of crystal symmetry, properties of band structure of solid state materials, band structure of semiconductors
Electrons and holes in semiconductors: equilibrium distribution functions, doping in semiconductors, state density, electron and hole densities, the Fermi level
Dynamics of electrons and holes : motion of  electrons and holes: motion of crystal electrons, the effective mass theorem, semi-classical theory of electron dynamics.
Particle transport in semiconductors : scattering, Boltzmann transport equation, low field transport without or within a weak magnetic field
Transport in semiconductors with excess charges : generation and recombination in semiconductors, Boltzmann transport equations for 2 band model, balance equations + examples

~~Basic principles of quantum mechanics
Periodic structure of crystalline solid state
Part 1: Crystal periodicity and symmetry properties of crystal structures
Part 2: Crystal structure of semiconductors
Part 3: The reciprocal lattice
 
Band theory of crystalline solids
Part 1: Schrödinger equation : consequences of crystal symmetry
Part 2: Properties of the band structure of solids
Part 3: Band structure of semiconductors
Part 4: Band theory of metals

Electrons and holes in semiconductors
Part 1: Equilibrium distribution functions : Fermi and Bose-Einstein
Part 2: Doping in semiconductors and density of states
Part 3: Electron and hole densities : the Fermi level

Dynamics of electrons and holes
Part 1: Motion of electrons in a crystal : the effective mass theorem/approximation
Part 2: Semiclassical theory of electron dynamics in solids
 
Particle transport in semiconductors
Part 1: Scattering
Part 2: Boltzmann transport equation (1)
Part 3: Boltzmann transport equation (2) : approximate solution
Part 4: Low-field transport with and without a weak magnetic field
 
Transport in semiconductors with excess charges

Part 1: Generation and recombination in semiconductors
Part 2 : Boltzmann transport equation in the 2-band model
Part 3: Balance equations + examples

Course material

Copy of the transparencies used during the lectures.
Fundamentals of Solid-State Physics for Semiconductors
G. Willems, R. Van Overstraeten, H.E. Maes
3e edition, Acco, 1995

Semiconductor Physics: Exercises and Laboratory Sessions (B-KUL-H06F3a)

0.6 ECTS : Practical 10 First termFirst term

Content

Introduction : basic principles of quantum mechanics and of the periodic structure of crystalline solid state materials, reciprocal lattice
Band theory of solid state materials : Schrödinger equation; consequences of crystal symmetry, properties of band structure of solid state materials, band structure of semiconductors
Electrons and holes in semiconductors: equilibrium distribution functions, doping in semiconductors, state density, electron and hole densities, the Fermi level
Dynamics of electrons and holes : motion of  electrons and holes: motion of crystal electrons, the effective mass theorem, semi-classical theory of electron dynamics.
Particle transport in semiconductors : scattering, Boltzmann transport equation, low field transport without or within a weak magnetic field
Transport in semiconductors with excess charges : generation and recombination in semiconductors, Boltzmann transport equations for 2 band model, balance equations + examples

Course material

Copy of the transparencies used during the lectures.
Fundamentals of Solid-State Physics for Semiconductors
G. Willems, R. Van Overstraeten, H.E. Maes
3e edition, Acco, 1995

Evaluatieactiviteiten

Evaluation: Semiconductor Physics (B-KUL-H26F2a)

Type : Exam during the examination period

ECTS Materials Physics and Technology for Nanoelectronics (B-KUL-H06G4A)

6 ECTS English 56 First termFirst term

Aims

Important for the progress of nanotechnology and nanoelectronics is the insight in the capabilities of the various materials used in nanoengineering, the technologies needed to produce them and their possible applications. In this course the electronic, optical, mechanical and thermodynamic qualities of metals, semiconductors, dielectrics and magnetic materials will be discussed. During this course insight will be acquired in the physics and the technology of materials used in the fabrication of nanoelectronic systems. In addition materials and technologies will be discussed used for various other electronic applications such as screens, memories, writing and reading head, LED's, lasers, etc. Recent evolutions in novel materials relevant for nanoelectronic applicatons, such as graphene and 2D materials, are also discussed.

Previous knowledge

This course addresses students interested in materials physics and technology for nano-electronics and electronic systems. Students with a general knowledge of physics and chemistry can follow this course. The course relates to knowledge as offered in the introductory courses H08T5A Basic electronic circuits ; H06F2A Semiconductor physics and ; H06F0A Semiconductor device. 

Identical courses

H05K6A: Materiaalfysica en technologie voor nano-elektronica

Is included in these courses of study

Onderwijsleeractiviteiten

Materials Physics and Technology for Nanoelectronics: Lecture (B-KUL-H06G4a)

4.8 ECTS : Lecture 36 First termFirst term

Content

Important for the progress of nanotechnology and nanoelectronics is the insight in the capabilities of the various materials used in nanoengineering, the technologies needed to produce them and their possible applications. In this course the electronic, optical, mechanical and thermodynamic qualities of metals, semiconductors, dielectrics and magnetic materials will be discussed. During this course insight will be acquired in the physics and the technology of materials used in the fabrication of nanoelectronic systems. In addition materials and technologies will be discussed used for various other electronic applications such as screens, memories, writing and reading head, LED's, lasers, etc. Recent evolutions in novel materials relevant for nanoelectronic applicatons, such as graphene and 2D materials, are also discussed.

Course material

The study material consists of the slides that are used in the courses (distributed through Toledo). 

Language of instruction: more information

The course will be given in English.

Materials Physics and Technology for Nanoelectronics: Exercises and Labs (B-KUL-H06G5a)

1.2 ECTS : Assignment 20 First termFirst term

Content

The exercise sessions will allow the students to go into more depth on a specific area of interest.

Course material

Articles from scientific journals.

Language of instruction: more information

The course is given in English.

Format: more information

The students are asked to perform a brief literature study on a specific topic of interest and prepare a group presentation.

Evaluatieactiviteiten

Evaluation: Materials Physics and Technology for Nanoelectronics (B-KUL-H26G4a)

Type : Exam during the examination period
Description of evaluation : Oral
Type of questions : Open questions
Learning material : Course material

Explanation

The exam is an oral open-book exam. The students will get 30 minutes time to prepare the answers before the oral examination.

Additional details will be provided through Toledo.

ECTS Dutch Language and Cultures (B-KUL-H06U6A)

3 ECTS English 40 Second termSecond term Cannot be taken as part of an examination contract
De Wachter Lieve (coordinator) |  N. |  De Wachter Lieve (substitute) |  Van Aken Stef (cooperator)

Aims

The main aim of this course is to help students acquire basic communicative skills in Dutch (level A1 of the Common European Framework). The course deals with the basic grammar notions and language functions and aims at the mastering of approximately 800 highly frequent words of Dutch. A lot of attention goes to culture with various lectures about Belgium. The course provides extensive practice in listening, reading, speaking and writing.

Onderwijsleeractiviteiten

Dutch Language and Cultures (B-KUL-H06U6a)

3 ECTS : Lecture 40 Second termSecond term
N. |  De Wachter Lieve (substitute) |  Van Aken Stef (cooperator)

Course material

R. Devos en H. Fraeters, Vanzelfsprekend, Leuven (Acco), 2008. The multimedia course materials 'Vanzelfsprekend' offer video, audio CDs, texts and exercises, very frequently used language functions and approximately 800 highly frequent Dutch words. The material also includes a lot of cultural information on Belgium and Flanders.

Evaluatieactiviteiten

Evaluation: Dutch Language and Cultures (B-KUL-H26U6a)

Type : Exam outside of the normal examination period

Explanation

There will be a test (writing, speaking and reading) at the end of the course as well as a number of assignments during the course. The students will also be asked to answer questions on cultural aspects, based on the attendance of two compulsory lectures on Dutch Language and Belgian Culture.

ECTS Selected Topics in Biomedical Signal Processing (B-KUL-H06W1A)

6 ECTS English 50 First termFirst term

Aims

This course consists of an in-depth study of advanced techniques for processing, analyzing and modelling of biomedical signals with applications in medical diagnosis and biomedical research. The course does not deal with details of instrumental techniques but focuses on algorithmic tools for processing biomedical signals after acquisition.

The course introduces generic signal processing and machine learning techniques/theory from the following fields: 

  • subspace based signal processing and data-driven multi-channel filter design
  • tensor methods and blind source separation
  • non-linear signal analysis and non-linear classification (incl. gaussian processes and deep learning) for time series data

and demonstrates how these are applied in the analysis of various biomedical signal modalities (incl. EEG, MEG, EMG, neural probes, ECG, NMR, polysomnography, etc.). Through computer projects, the students learn how to apply these techniques on actual biomedical signals.

At the end of the course, the student should have acquired the following skills:

  • Being familiar with (and having insight in) the typical problems arising in the analysis and interpretation of biomedical signals
  • A sufficient level of understanding of the techniques and theory covered in the lectures and how they are applied in biomedical contexts.
  • The ability to correctly program these methods in Matlab/Python, apply them to biomedical signals, and critically evaluate their performance.

Previous knowledge

The students should have basic knowledge in statistics, linear algebra, systems theory, signal processing, stochastic processes, machine learning, and Matlab/Python programming. More specifically:

  • for STATISTICS: second-order statistics (normality, variance, correlation) and distributions (Gaussian, etc.), both for univariate and multivariate distributions, principal component analysis (PCA), etc.
  • for LINEAR ALGEBRA: matrix computations, vector spaces, orthogonality, eigenvalue and singular value decomposition, least squares theory, etc.
  • for SYSTEMS THEORY and SIGNAL PROCESSING: Concepts such as transfer function, convolution, FIR filtering, the Discrete Fourier transform, short-time Fourier transform, adaptive filters, etc.
  • for STOCHASTIC PROCESSES: Concepts such as stationarity, power spectral density (PSD), ergodicity, Wiener filtering, etc.
  • for MACHINE LEARNING: basic classifiers (LDA, artificial neural networks)
  • MATLAB programming: basic knowledge
  • PYTHON programming: basic knowledge 

(Students that do not have any experience in Python or Matlab can still follow the course, but they should take an introductory Python/Matlab tutorial at home. The preparation time to get familiar with Python/Matlab is NOT counted in the course load. If a student is not familiar with Python, it is allowed to make the Python projects in Matlab, but then no or less support will be available).

KU Leuven students who have earned credits for all of the following basic courses (or comparable courses) should have seen most of the required theoretical knowledge:

  • H01A4A or I0D38B: Linear Algebra
  • H01L6A and/or H05F3A: Digital Signal Processing and/or Digital Signal Processing for Communication and Information Systems, or comparable courses.
  • H03I2A and/or H05I7A: Biomedical Data Processing and/or Stochastic Signal and System Analysis
  •  H03I2A and/or H09J2A: Biomedical Data Processing and/or Image Analysis and Understanding

Onderwijsleeractiviteiten

Selected Topics in Biomedical Signal Processing: Lectures (B-KUL-H06W1a)

4.83 ECTS : Lecture 30 First termFirst term

Content

Information on the Lectures. 

In biomedical signal processing, the aim is to extract clinically, biochemically or pharmaceutically relevant information out of (potentially low-quality) measurements in order to enable an improved medical diagnosis. Typically, the relevant information is obscured by large measurement artifacts and background noise from interfering physiological processes. Furthermore, physiological signals often exhibit a large variability (across time and across patients). Last, the recorded data can become too big to be analysed manually. Therefore, accurate and automated quantification of this information requires an ingenious combination of:

·        an adequate pretreatment of the data,

·        the design of an appropriate model and model validation,

·        a fast and numerically robust model parameter quantification method, and

·        an extensive evaluation study, using in-vivo and patient data, up to the embedding of the advanced algorithms into efficient tools to be used by clinicians.

To solve each of the above issues, special attention is given to the design of improved models and the development of advanced algorithms, as mentioned above, for processing multi-channel biomedical data, possibly acquired using various modalities (e.g. EEG and fMRI, EEG and sound, polysomnography).

The following advanced topics are discussed in 12 two-hour lectures, split up in 3 parts:

·        Part 1: Data-driven multi-channel filter design (5x2h, incl. practical info on the course): including linear spatio-temporal MISO/SIMO/MIMO models, an introduction to linear estimation theory (ML, least squares, MMSE, BLUE, pre-whitening), data-driven spatio-temporal filter design (SNR-optimal filtering, CCA, CSP, MWF, and low-rank models thereof), beamforming, dimensionality reduction, and channel selection. Applications include (amongst others) brain-computer interfaces (auditory and motor), neural spike sorting, artifact removal in EEG, neural source localization, echography, wearable EEG, polysomnography

·        Part 2: Tensor-based methods (3x2h): including tensor decompositions (CPD, MLSVD), multilinear PCA, blind source separation and ICA. Applications include (amongst others) harmonic retrieval (NMR), excitation-emission spectroscopy (amino acids), detection of epileptic seizure in EEG, fetal ECG extraction.

·        Part 3: Non-linear signal analysis and deep learning for time series (4x2h): including an introduction to fractal and chaos theory. Self-similarity, multifractal analysis, power-law type behavior, detrended fluctuation analysis are discussed. Also advanced machine learning techniques including common deep learning and causal ML techniques for medical data and time series will be discussed.  Applications include (amongst others) non-linear heart rate variability analysis, speech processing and automated sleep staging.

    Course material

    slides + online material on Toledo

    Format: more information

    12 lectures of 2 hours

    Selected Topics in Biomedical Signal Processing: Exercises (B-KUL-H06W2a)

    1.17 ECTS : Practical 20 First termFirst term

    Content

    Computer sessions:

    This study activity consists of 3 computer sessions of 2,5 hours (in Matlab and Python), during which a practical project is introduced. These projects offer practical experience with life-like signals and are essential to understand and appreciate the theory. The projects are to be solved either individually or in teams of 2 students during the introduction session and continued at home. The students are asked either to apply the offered Matlab/Python programmes on biomedical signals and to analyze the results, or to further expand on or develop own computer programmes. A paper + electronic version of the reports of each computer session has to be handed in before the start of the Christmas vacation (1 report per team, deadline will be communicated through Toledo). In addition, the corresponding computer code has to be uploaded on Toledo (same deadline).

     

    Course material

    Slides, Matlab/Python software, datasets, Tensorlab (www.tensorlab.net).

    Format: more information

    3 exercise sessions in Matlab/Python on computer, which introduce 3 project tasks to be finished at home

    Evaluatieactiviteiten

    Evaluation: Selected Topics in Biomedical Signal Processing (B-KUL-H26W1a)

    Type : Partial or continuous assessment with (final) exam during the examination period
    Description of evaluation : Written, Paper/Project
    Type of questions : Open questions
    Learning material : List of formulas

    Explanation

    COMPUTER SESSIONS: Before attending each of the three computer sessions, the student studies the required material and fills in a short online quiz at home to evaluate whether the required prior knowledge has been acquired to be able to solve and implement the computer problems during the session. The student’s score on the homework quizzes will be monitored by the didactical team but will not be taken into account for the final grade. However, submitting the answers to the quiz before the deadline is obligatory (failure to do so might be taken into account in the final grade).

    REPORTS: Before the start of the Christmas holidays the student hands in a report of each computer session (3 in total) and uploads the corresponding computer code through Toledo. The deadline is communicated through Toledo.

    EXAM: During the final examination, the student will be questioned on each of the 3 course parts: (1) Data-driven multi-channel filter design, (2) Tensor methods, (3) Nonlinear signal analysis and deep learning. Example questions will be provided on Toledo for each part. The emphasis of the exam is on understanding and insight; perfectly reproducing the relevant course notes is not a sufficient condition to pass. The exam is ‘closed book’, yet a formularium is available (no other material is allowed).

    The weights for each part in the total score are the following:

    Part 1 (Data-driven multi-channel filter design): 35%

    Part 2 (Tensor methods): 30%

    Part 3 (Nonlinear signal analysis and deep learning): 35%

    In all parts, the grades for the theory and the project report are weighted as 60% and 40% respectively.

    Note on plagiarism: all reports and computer code will be scanned for plagiarism. Software plagiarism also includes copying/manipulating pieces of code from other students (or other sources) without mentioning the source. Hiding software plagiarism by manipulating/reworking existing code is treated as fraud. All such plagiarism cases will be forwarded to the faculty exam committee.

    Information about retaking exams

    The student is asked to remake the same 3 exercise sessions and update the reports (with a short explanation what has changed). Feedback on the reports is given upon request, yet only within the foreseen time span as mentioned in the examination rules of the university.

    The reports need to be submitted 10 days before the examination date at the latest. The theory and the written reports are re-evaluated similarly as for the initial exam. It is required to (re)submit the reports, as grades on reports from previous exam period(s) are not carried over.

    ECTS Introduction to Safety Engineering (B-KUL-H08N0A)

    3 ECTS English 30 First termFirst term

    Aims

    Historic and recent incidents in society and in the industry indicate that awareness and knowledge of safety should be raised. This course offers a treatise of safety from a societal perspective as well as from an industrial perspective with a practical focus on the design and maintenance part.

    The aims of the course are as follows.

    • The students knows orders of magnitude related to (catastrophic) incidents and some important root causes
    • The student can define the vocabulary related safety and risk
    • The student understands the main principles of risk perception
    • The student can define and describe safety in a concise and extended way including the drawbacks.
    • The student understands the difference between safety and security and can elaborate on the latter.
    • The student knows the risks analysis techniques
    • The student can define inherent safe design
    • The student can define business continuity and can explain the concept
    • The student understands the scoping and the main principles of the Seveso directive
    • The student understands process safety and the different pillars of the management thereof
    • The students knows the principal causes of some historical incidents
    • The student can define human and organizational factors as well as human performance
    • The student is able to conduct a risk assessment on a given system and is aware of and can formulate the drawbacks of the process.
    • The student is able to understand the application of safety in the lifecycle of an installation with a focus on the design and maintenance part.
    • The student will create a build-in safety reflex in the actual and future activities in the individual, professional and societal context.

    Onderwijsleeractiviteiten

    General Introduction to Safety Engineering: Lectures (B-KUL-H08N1a)

    2.4 ECTS : Lecture 18 First termFirst term

    Content

    Some important major accidents in the process industries are used as starting point to prove the importance of safety engineering and as a starting point to explain the principles of the international regulations (e.g. Seveso directive) and risk assessment methods.

    Topics addressed in this part are, e.g.,

    • Hazard versus risk
    • Process safety versus security
    • Principles of risk perception
    • Risk analysis techniques (FMEA, HAZOP, …)
    • Inherent safe design
    • Process safety versus Business continuity
    • Scoping and principles of the Seveso directive
    • Pillars of process safety management
    • Root causes of some historical incidents
    • Role of human and organizational factors, and human performance

    Course material

    Course material – handouts and selected articles

    General Introduction to Safety Engineering: Seminar (B-KUL-H08N2a)

    0.6 ECTS : Practical 12 First termFirst term

    Content

    This part of the course focusses on “safety in a maintenance perspective”.

    In a series of guest lectures by industrial experts, several topics related to safety and maintenance are addressed.

    E.g.,

    • Instrumental safety in the process industry
    • Safety in the chips machinery industry: Process and machine safety in the loop
    • Material selection and safety: real life cases

    Course material

    handouts and selected articles

     

    Evaluatieactiviteiten

    Evaluation: Introduction to Safety Engineering (B-KUL-H28N0a)

    Type : Partial or continuous assessment with (final) exam during the examination period
    Description of evaluation : Written, Paper/Project, Participation during contact hours

    Explanation

    Part 1 (Lectures): Written exam during exam period. Closed book.

    Part 2 (Seminars): Brief paper writing (3 pages). Details are communicated during classes.

    It is mandatory to participate in both exam parts to pass the course, and the student has to pass on both exam parts to pass on the course.

    ECTS Design of RF and mm-Wave Integrated Circuits (B-KUL-H09I9A)

    3 ECTS English 28 First termFirst term

    Aims

    Students learn to design and analyze high-frequency integrated circuits and understand the trade-offs in the design of such circuits

    Order of Enrolment



    (FLEXIBLE (H09I6A) OR FLEXIBLE (H0E92A) OR FLEXIBLE (H09J7A) OR FLEXIBLE (H0E83A))


    H09I6AH09I6A : Ontwerp van elektronische schakelingen
    H0E92AH0E92A : Design and Implementation of Analog Circuits
    H09J7AH09J7A : Design of Electronic Circuits
    H0E83AH0E83A : Ontwerp en implementatie van analoge schakelingen


    Onderwijsleeractiviteiten

    Design of RF and mm-Wave Integrated Circuits: Lecture (B-KUL-H09J0a)

    2.42 ECTS : Lecture 18 First termFirst term

    Content

    Architectures for integrated radios in CMOS

    RF CMOS upconverters

    RF CMOS downconverters

    RF CMOS LNAs

    RF CMOS PAs

    CMOS mm-wave actives

    CMOS mm-wave passives

    CMOS mm-wave design examples

    Course material

    handouts of slides, technical papers

    Design of RF and mm-Wave Integrated Circuits: Exercises and Laboratory Sessions (B-KUL-H09J1a)

    0.58 ECTS : Practical 10 First termFirst term

    Content

    Session-1: design of an inductor in CMOS

    Session-2: design of an RF amplifier: small-signal, noise and linearity

    Session-3: design of an RF amplifier: stability

    Session-4: layout

    Course material

    course text and notes

    Format: more information

    IC design sessions in a PC room at ESAT

    Evaluatieactiviteiten

    Evaluation: Design of RF and mm-Wave Integrated Circuits (B-KUL-H29I9a)

    Type : Exam during the examination period
    Description of evaluation : Oral
    Type of questions : Open questions
    Learning material : Course material

    Explanation

    The exam and evaluation consists of two parts:

    20% of the score is on the project work during the year, and the report

    80% of the score is on the oral defense exam

    If the evaluation indicates that the student has not sufficiently met one or several of the aims of the course unit, the global result may deviate from the weighted average of all subcomponents.

     

    ECTS Image Analysis and Understanding (B-KUL-H09J2A)

    6 ECTS English 56 Second termSecond term
    Tuytelaars Tinne (coordinator) |  Tuytelaars Tinne |  N. |  Proesmans Marc (substitute)

    Aims

    Conceptual knowledge of basic algorithms for the processing and interpretation of images.

    Previous knowledge

    The student must have a basic knowledge of algebra, analysis, geometry, signal processing, pattern recognition and basic notions of machine learning

    Is included in these courses of study

    Onderwijsleeractiviteiten

    Image Analysis and Understanding: Exercises and Practicals (B-KUL-H09I2a)

    1.17 ECTS : Practical 20 Second termSecond term
    Tuytelaars Tinne |  N. |  Proesmans Marc (substitute)

    Content

    The exercises and practical sessions elaborate the course knowledge.

    Course material

    Exercise material is distributed during the sessions or available from Toledo.

    Language of instruction: more information

     

     

    Format: more information

    Guided exercises, partially computer-supported. 

    Image Analysis and Understanding: Lecture (B-KUL-H09J2a)

    4.83 ECTS : Lecture 36 Second termSecond term
    Tuytelaars Tinne |  N. |  Proesmans Marc (substitute)

    Content

    In this course, the basics of  image processing are acquired and combined with pattern recognition into algorithms for image interpretation. 

    Part I: Image processing 
    - recording and display 
    - sampling and quantization 
    - filtering and image enhancement 
    - unitary transforms (2D FFT, PCA) 

    Part II: Image interpretation
    - surface features (color, texture) 
    - optical flow and tracking 
    - 3D geometry and reconstruction 
    - local features and image matching 

    Part III: Machine-learning based approaches 
    - network architectures for image classification
    - dense prediction tasks (semantic segmentation, depth estimation, pose estimation)
    - object detection
    - advanced topics (image generation, dealing with video, efficient implementations, new trends, ...)
     

    Course material

    Course notes or slides provided by the lecturers.

    Language of instruction: more information

    Dutch-speaking students can take the exam in Dutch if they want to.

    Format: more information

    18 lecture classes: roughly 1/3 on image processing, 1/3 on image interpretation, and 1/3 on machine-learning based methods.

    Evaluatieactiviteiten

    Evaluation: Image Analysis and Understanding (B-KUL-H29J2a)

    Type : Exam during the examination period
    Description of evaluation : Oral
    Type of questions : Multiple choice
    Learning material : None

    Explanation

    Students get a set of multiple choice questions.
    After a short preparation, they are asked to explain and motivate their choices during the oral exam, sometimes followed by a short discussion.
    Note that the evaluation is mostly based on the given explanation - just checking the right box is not enough.
    There's no correction for guessing.

     

     

    ECTS Building Blocks for Telecom Systems (B-KUL-H09J4A)

    3 ECTS English 28 First termFirst term

    Aims

    In this course we study a number of building blocks of high-frequency (microwave) transmitters and receivers of communication systems. The basic techniques for the description and design of these circuits are taught, and are afterwards applied to the different building blocks. The stress is on working distributed components as alternative for discrete components, and on thinking in terms of travelling waves as alternative to localised voltage and current.

    Previous knowledge

    Basic knowledge of transmission lines is required (such as in the course on 'Electromagnetic waves').

    Order of Enrolment



    SIMULTANEOUS (H06A3A)


    H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing


    Identical courses

    H05C9A: Bouwblokken voor telecomsystemen

    Onderwijsleeractiviteiten

    Building Blocks for Telecom Systems: Lecture (B-KUL-H09J4a)

    2.41 ECTS : Lecture 18 First termFirst term

    Content

    • Transmission lines in the frequency domain and in the time domain
    • The use of S-parameters for the characterisation of RF-circuits
    • Basic techniques for fundamental passive building blocks and methods of implementation
    • RF-amplifiers: design an relation to low frequency techniques (design, noise, power)

    Course material

    Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

    Notes by the teacher that are distributed by VTK (slides and text of some chapters)

    Interesting but not mandatory book: Pozar D. "Microwave Engineering", 4th edition, J. Wiley, 2012, ISBN 978-0-470-63155-3

    Format: more information

    These are classical classes with as much interaction as possible between studentes and the teacher. The relation with practice is constantly illustrated with examples of realisations in research.

    Building Blocks for Telecom Systems: Exercises and Laboratory Sessions (B-KUL-H09J5a)

    0.59 ECTS : Practical 10 First termFirst term

    Content

    The different subjects of the lectures are mastered and tested against reality through simulations with ADS and some lab demonstrations.

    Course material

    The required texts and presentations are provided during the sessions and/or through Toledo.

    Format: more information

    Exercise sessions and exercises in the computer classes during which each student can use professional ADS-software.
    Visit to the microwave and millimeter wave lab of ESAT-TELEMIC, with demonstration of measurement setups.

    Evaluatieactiviteiten

    Evaluation: Building Blocks for Telecom Systems (B-KUL-H29J4a)

    Type : Exam during the examination period
    Description of evaluation : Written
    Type of questions : Open questions
    Learning material : List of formulas, Calculator

    Explanation

    The exam is a written, closed-book exam. The students may consult the Liber Figurarum, of which a copy will be provided as part of the exam sheets. 

    Also allowed: calculator, ruler, compass
    Not allowed: any other document or electronic device

    Information about retaking exams

    Exam format is the same as during the 1st exam session.

    ECTS Design of Digital Platforms (B-KUL-H09J6A)

    6 ECTS English 88 First termFirst term
    Dehaene Wim (coordinator) |  Dehaene Wim |  N. |  Verplancke Joost (substitute)

    Aims

    The course "design of digital platforms" aims to give the student insight into what a digital platform is through an overview of the different design steps and important design decisions in the development of a digital platform. Digital platforms make the connection between an application (e.g. multimedia) and the realization into embedded systems. The selection of a digital platform is essential in the design of electronic systems.

    After this course, the students should be able to:

    • explain the different steps and abstraction levels in the design process of a digital platform;
    • explain the impact of a low-level design decision on the system level performance parameters, being latency, throughput, area, energy efficiency and flexibility;
    • to discuss the trade-offs between these parameters;
    • to derive a control flow graph and data flow graph for simple algorithms;
    • be able to implement a simple signal processing algorithm on an embedded processor and/or hardware accelerator, using data and control flow graphs.
    • be able to compute and optimize the delay and energy consumption of a simple gate-level circuit;
    • explain the differences between available digital platforms and choose the best suited platform for a given application;
    • assess the impact of technology scaling on the future of digital platform performance;

    These goals are pursues through 3 activities:

    • Lectures: teaching theories, accompanied by small written exercises.
    • Exercise sessions: used to introduce the different design tools and design environments used during the design seminar. They make the link between theory and practice.
    • Design seminar: in this part a design is made from specifications to implementation into an embedded system by means of HW/SW co-design.

    Previous knowledge

    Students should have basic knowledge of CMOS digital logic.

    They should be able to design simple combinatorial and sequential circuits.

    They should have experience with a hardware description language (Verilog, VHDL or other).

    For the design seminar, they should also be familiar with a low level software language (e.g. C).

     

    Identical courses

    H09I0A: Ontwerp van digitale platformen

    Is included in these courses of study

    Onderwijsleeractiviteiten

    Design of Digital Platforms: Lecture (B-KUL-H05E7a)

    2.41 ECTS : Lecture 18 First termFirst term
    Dehaene Wim |  N. |  Verplancke Joost (substitute)

    Content

    The lecture series of the course "design of digital platforms" contains the following topics:

    • Design of digital integrated circuits: translation from specificaties to implementation
    • Different abstraction levels: design tasks, terminology and design environments
    • Design goals: area, throughput, delay, power, energy, flexibility (HW/SW trade-off)
    • Data flow graph and control flow graph: definition and usage during design of digital platforms
    • HW/SW co-design
    • Gate level design for low power and for low energy
    • Usage of transformations at the algorithmic and hardware level to reach design goals
    • Large variation of digital platforms for embedded systems
    • Impact from technology scaling on digital platform design and selection

    Course material

    For the lectures, all course material is available through Toledo:

    • The material on the power point slides is the essential material the students should master
    • Background reading from text books, journal or conference papers is also available on Toledo.

    Is also included in other courses

    H09J6B : Design of Digital Platforms

    Design of Digital Platforms: Exercises and Laboratory Sessions (B-KUL-H05E8a)

    0.59 ECTS : Assignment 10 First termFirst term
    Dehaene Wim |  N. |  Verplancke Joost (substitute)

    Content

    The exercise sessions are used to introduce hardware description language, software description language and a design environment. During the exercise sessions, the students will practice with these description languages and design environments, so that they are ready to use  them in the design seminar.

     

    Course material

    Material is available on Toledo.

    Format: more information

    Students form teams of 2 or  3 students at the start of the semester. Students stay in this team for the design seminar.

    Is also included in other courses

    H09J6B : Design of Digital Platforms

    Design of Digital Platforms: Design Seminar (B-KUL-H09I1a)

    3 ECTS : Assignment 60 First termFirst term
    Dehaene Wim |  N. |  Verplancke Joost (substitute)

    Content

    During the design seminar, the students will learn hands-on to select the best digital platform for a given application. It consists of the following steps:

    • Step 1: the given application is implemented on a small micro-controller in software. This will typically be C on an 8-bit or 16-bit micro-controller. Its SW performance is measured.
    • Step 2: the C-version is further optimized in assembly if the performance goals are not reached. This task will give them insight into performance losses due to software compilers.
    • Step 3: students will make a HW/SW co-design project. A dedicated hardware block, either as co-processor, or instruction set extension, is made for the time critical parts of the application. Since there is a large design space, students have to choose themselves the split between HW and SW, based on the performance results obtained in the previous steps.
    • Step 4: HW/SW co-simulation of the final design is made. And if time permits, it is downloaded on an FPGA.
    • Step 5: Students have to present their design to their fellow students. Important trade-offs, design decisions and critical evaluation are discussed.

    Course material

    All material and instructions are available on Toledo.

    Is also included in other courses

    H0Q34A : Design Seminar for Digital Platforms

    Evaluatieactiviteiten

    Evaluation: Design of Digital Platforms (B-KUL-H29J6a)

    Type : Partial or continuous assessment with (final) exam during the examination period
    Description of evaluation : Written, Project/Product, Report, Presentation
    Type of questions : Open questions
    Learning material : Calculator

    Explanation

    Evaluation of the course consists of two parts:

    • The theory part has an exam during the examination period: it is a written exam. 
    • The design seminar part is evaluated with permanent evaluation: this means there is one intermediate presentation and one final presentation of the project results and there is one final report of the design.

    Grades are determined by the following algorithm:

    • T = score of Theory part (maximum score is 20)
    • S = score of Design Seminar (maximum score is 20)
    • If (T or S) less than 9, then FinalScore = minimum (T or S)
    • Else FinalScore = (T+S)/2

     

    Information about retaking exams

    For the 2nd examination chance, the student has the option to retake only the part for which the student failed in the 1st examination period.

    ECTS Software for Real-Time Control (B-KUL-H09J9A)

    3 ECTS English 28 Second termSecond term

    Aims

    After this course the student can

    • list the characteristics of different types of real time and embedded systems;
    • describe the typical problems which real time and embedded systems face;
    • describe and compare the solutions that programming languages, operating systems, and software engineering methods offer to address these problems;
    • evaluate the suitability of different programming languages for real-time and embedded systems, and compare these programming languages according to their suitability;
    • describe and compare the typical real time scheduling algorithms.

    Previous knowledge

    A thorough knowledge of a programming language, including basic principles of object-oriented languages.

    Identical courses

    H05I5A: Programmatuur voor real-time controle

    Is included in these courses of study

    Onderwijsleeractiviteiten

    Software for Real-Time Control: Lecture (B-KUL-H09J9a)

    2.41 ECTS : Lecture 18 Second termSecond term

    Content

    The course studies the specific characteristics of software for real-time and embedded systems, and investigates which concepts, methods and techniques are suited for the design and implementation of such software.
    More specifically the capabilities of different languages for writing software for real-time and embedded systems are discussed and compared: C, Ada, Java, RTSJ. Reliability and concurrency receive special attention.
    The necessary support by operating systems (e.g. for scheduling) is studied. The POSIX API as a standard of a RTOS is used as an example. Also writing device drivers is discussed.

    Course material

    Study cost: 11-25 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

    • Book: Alan Burns, Andy Welling, "real-time Systems and Programming Languages", 2009 Fourth edition, Addison Wesley Longmain 
      ISBN: 978-0-321-41745-9
    • Copies of transparencies

    Software for Real-Time Control: Exercises and Laboratory Sessions (B-KUL-H09K0a)

    0.59 ECTS : Practical 10 Second termSecond term

    Content

    Four exercise sessions:

    • Concurrent programming: get experience with Java threads
    • Shared memory and synchronization: gain experience in Java
    • Thread scheduling
    • Real Time Specification for Java

    The exercise sessions are hands-on on PC.

    Course material

    Questions for exercises are uploaded on Toledo. For the rest the same material is used as for the lectures.

    Evaluatieactiviteiten

    Evaluation: Software for Real-Time Control (B-KUL-H29J9a)

    Type : Exam during the examination period
    Description of evaluation : Written
    Type of questions : Open questions

    Explanation

    Written exam that assesses insight in the course material, knowledge of terminology and understanding of pieces of code from the book.

    If the evaluation indicates that the student has not sufficeintly met one or several of the aims of the course unit, the global result may deviate from the weighted average of all subcomponents.

    ECTS Design of Digital Integrated Circuits (B-KUL-H09K1A)

    3 ECTS English 28 Second termSecond term

    Aims

    Deepen the knowledge about digital integrated circuit design. The common thread throughout the course is the optimisation of digital circuits in view of the energy verus performance trade off.

    Previous knowledge

    A thorough knowledge about basic electricity and electronics. Also a starter's knowledge about integrated circuit design is required.

    It is highly recommended that the students achieve a sucessful exam of the course "desing of digital platforms" (h09k1) before starting this course

    Order of Enrolment



    SIMULTANEOUS(H09J6A) OR SIMULTANEOUS(H09J6B)


    H09J6AH09J6A : Design of Digital Platforms
    H09J6BH09J6B : Design of Digital Platforms


    Identical courses

    H09I5A: Ontwerp van digitale geïntegreerde schakelingen

    Onderwijsleeractiviteiten

    Design of Digital Integrated Circuits: Lecture (B-KUL-H09K1a)

    2.41 ECTS : Lecture 18 Second termSecond term

    Content

    There are four basic themes in the course
    - design of advanced digital logic beyond standard CMOS logic
    - design and use of IP blocks
    - low power, low energy design
    - production test of digital circuits

    Course material

    Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

    specific material (books, papers, slides, ...) gathered by the teacher on toledo

    Format: more information

    The course material is distributed to the students before the class combined with questions and problems about the topic under study. De students will digest this material before the class. During the class there will be a discussion and further deepening of the material

    Design of Digital Integrated Circuits: Exercises and Laboratory Sessions (B-KUL-H09K2a)

    0.59 ECTS : Practical 10 Second termSecond term

    Content

    For the three first themes of this course
    - design of advanced digital logic beyond standard CMOS logic
    - design and use of IP blocks
    - low power, low energy design
    the knowledge will be deepened by means of practical excercises

    Course material

    specific material for the exercise sessions distributed via Toledo

    Format: more information

    excercise sessions during which the students solve exercises and problems under guidance

    Evaluatieactiviteiten

    Evaluation: Design of Digital Integrated Circuits (B-KUL-H29K1a)

    Type : Exam during the examination period
    Description of evaluation : Oral
    Type of questions : Open questions, Closed questions
    Learning material : Course material

    Explanation

    This is a problem based open book exam. The students can use all material distributed for the course and all other literature and notes. The use of a pocket calculator approved by the faculty is allowed. The use of other electronic equipment (laptop, table, smart phone, ...) is not allowed. If, for reasons of force majeure, the faculty decides that the preparation time for an oral exam must be limited to less than two hours, the oral exam will be replaced by a written exam. The impact of this decision will be explained on Toledo.

    ECTS Advanced Topics on Analog and RF IC Design (B-KUL-H09K3A)

    3 ECTS English 28 Second termSecond term

    Aims

    The course studies various advanced lectures on Analog IC design topics. 

      Order of Enrolment



      SIMULTANEOUS(H09I9A) AND FLEXIBLE(H05E3A)


      H05E3AH05E3A : Design of Analog and Mixed-Signal Integrated Circuits
      H09I9AH09I9A : Design of RF and mm-Wave Integrated Circuits

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Advanced Topics on Analog and RF IC Design: Lecture (B-KUL-H09K3a)

      2.41 ECTS : Lecture 18 Second termSecond term

      Content

      The lectures include topics such as:

      • EMC and Analog Integrated Circuits : coupling effects and mechanisms
      • EMC and Analog Integrated Circuits: de-coupling, bondwires, substrates
      • EMC and Analog Integrated Circuits: design for low EME and low EMI
      • Polymer microwave fibers: a blend of mm-wave, wireline and optical communication
      • THz in CMOS: dream, nightmare or reality?
      • Advanced ADC circuits and implementations
      • Advanced circuits for Optical communication
      • Basics on measurement equipment for analog circuits

      Course material

      Handouts of slides

      Advanced Topics on Analog and RF IC Design: Exercises and Laboratory Sessions (B-KUL-H09K4a)

      0.59 ECTS : Practical 10 Second termSecond term

      Content

      measurement of an analog IC

      Evaluatieactiviteiten

      Evaluation: Advanced Topics on Analog and RF IC Design (B-KUL-H29K3a)

      Type : Exam during the examination period
      Description of evaluation : Oral
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      Open book. Discussion of chapters: the first chapter is selected by students choice. the second chapter is selected by drawing,

      Questions will be asked related to the other studied chapters during the oral exam

      If the evaluation indicates that the student has not sufficiently met one or several of the aims of the course unit, the global result may deviate from the weighted average of all subcomponents.

      ECTS Audio and Speech Processing (B-KUL-H09K5A)

      6 ECTS English 56 First termFirst term

      Aims

      Acquire insights in audio and speech processing.

      Know, understand and applying mathematical models for speech signals in answering questions related to design and research. Gain insight into the structure of speech signals. Understand and apply hidden Markov model theory and related estimation probems. To recognize, understand and design the components of a speech coders, recognizers and synthesizers.

      Understand and apply basic principles and algorithms for audio processing, in particular for recording and playback of digital audio, beamforming, noise reduction, active noise control, echo- and feedback cancellation, etc.

      Previous knowledge

      • Digital signal processing:  DFT/FFT, filtering, z-transform, optimal and adaptive filters.
      • Stochastic signals: multi-dimensional distribution functions,  verdelingen, moments of distribution functions
      • Mathematics: optimization, constrained optimization.

      Order of Enrolment



      FLEXIBLE (H05F1A)


      H05F1AH05F1A : Digital Signal Processing for Communications and Information Systems

      Identical courses

      H05C3A: Audio- en spraakverwerking

      Onderwijsleeractiviteiten

      Audio Processing: Lecture (B-KUL-H09K6a)

      2.41 ECTS : Lecture 18 First termFirst term

      Content

      Chapter 1: Introduction
      Chapter 2: Noise Reduction
      Chapter 3: Fixed Beamforming
      Chapter 4: Adaptive Beamforming & Multi-Channel Noise Reduction
      Chapter 5: Acoustic Echo and Feedback Cancellation
      Chapter 6: Sound Field Control
      Chapter 7: Distributed Audio Signal Processing

      Chapter 8: Sound Field Recording and Reproduction (guest lecture, attendance is mandatory)

      Course material

      Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      Lecture slides  and supporting textbooks.

      Audio Processing: Exercises and Laboratory Sessions (B-KUL-H09K7a)

      0.59 ECTS : Practical 10 First termFirst term

      Content

      Design of a concrete real-time signal processing system for recording/playback of digital audio, based on concepts studied in the lectures.

      Course material

      Handouts and  manuals

      Format: more information

      Four supervised lab sessions plus homework.

      Speech Processing: Lecture (B-KUL-H09K8a)

      2.41 ECTS : Lecture 18 First termFirst term

      Content

      Part 1 Speech processing

      Speech models at multiple levels:
      * phonetics
      * source-filter model, formants and linear predictive coding (LPC)
      * feature vector extraction: estimation of LPC parameters, the Levinson-Durbin algorithm, short-term Fourier transfors, Mel-spectra, cepstra,

      Speech coding:
      * LPC-based coders: CELP, MELP, RELP, RPE
      * perceptial coders including MP3

      Speech recognition:
      * Bayesian formulation, definition of Hidden Markov Models (HMM)
      * likeihood of data under the HMM assumption
      * HMM topology
      * parameter estimation in HMMs
      * the VIterbi algorithm

      Taalmodellering
      * N-grammen
      * model estimation: maximum likelihood, leaving-one-out
      * context-free grammars

      Speech synthesis
      * natural language processing, grapheme-to-phoneme conversion
      * signal processing: source-filter synthesis, concatenative synthesis, the PSOLA-algorithm
      * synthesis with HMMs

      Course material

      Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      Speech Processing: Exercises and Laboratory Sessions (B-KUL-H09K9a)

      0.59 ECTS : Lecture 10 First termFirst term

      Content

      A project assigment, in which students will apply the concepts discussed in the lectures. Students will hand in their report which will be graded.

      Evaluatieactiviteiten

      Evaluation: Audio and Speech Processing (B-KUL-H29K5a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      • The project work is graded during the lab sessions and also based on submitted reports, and accounts for 25% of the grade.
      • The written exam is an open book exam during the examination period and accounts for 75% of the grade.

      Information about retaking exams

      The retake exam (in the 3rd exam period)  has additional questions on the project work.

      ECTS Privacy Technologies (B-KUL-H09L2A)

      3 ECTS English 35 First termFirst term
      N. |  Das Debajyoti (substitute)

      Aims

      Here are three reasons why you might want to take this course:

      First, as engineer you will be designing, implementing, or managing electronic systems and services that in most cases have privacy implications. For example, ambient sensors and biomedical implants collect, process, store, and communicate (sometimes highly sensitive) data related to individuals; the data generated by ubiquitous electronic communications provides detailed insight into people’s activities and lifestyle; and the personalization of multimedia applications and services relies on learning about individuals’ most intimate preferences and adapting to them.

      The first objective (O1) of the course is that you are able to identify the privacy concerns that arise in different scenarios. For example, if you are designing a new video-on-demand service for mobile phones, what could go wrong for your future users’ privacy?

      The second objective (O2) is that you are able to relate privacy concerns to technical design choices. For example, what privacy risks arise from relying on unique identifiers? or from centralizing the storage and processing of data?

      Privacy technologies aim to mitigate privacy concerns. The third objective (O3) is that you understand the principles underlying the design of privacy technologies. For example, anonymity technologies require diversity (of users, uses, attributes, internet subnets, etc.); advanced cryptographic protocols enable sophisticated services (e.g., smart metering) while minimizing the disclosure of data beyond what seems intuitively possible; and differential privacy ensures that queries to database of personal records cannot be used to determine if a particular individual record is included in the database.

      Second, you will deal with privacy issues not only as an engineer but also as an individual and as a member of society. As an individual, you use a variety of services: mobile communications, online shopping, search engines such as Google, social media such as Facebook or Twitter, etc. The fourth objective of this course (O4) is that you become aware of what privacy issues are associated to the use of different services, what are your basic (legal) rights concerning privacy and data protection, and what technologies you can use to mitigate your exposure to privacy risks. As a result of this, you will be able to form your own informed opinions on how privacy issues should be addressed in our increasingly technological society. Many of these privacy issues are at the heart of ongoing debates whose outcome will have an influence on how society is shaped: Is the tracking of Internet users necessary for the economic sustainability of the Internet? Might profiling and personalization lead to social sorting and discrimination? Should certain content be censored? Should we have real name policies in social media to combat harassment? Should user communications be stored for long periods of time for the purpose of law-enforcement investigations? Are we building an unprecedented mass surveillance infrastructure, or are overblown privacy concerns an obstacle to data-driven innovation?

      Finally, the course is heavily based on recent research. By participating in this course you will get a first hand experience of what research is like. The sixth objective (O5) is that you learn to read scientific articles, as well as to develop and present your own ideas. 

       

      Previous knowledge

      Ideally, students have a basic background in:

      • probability theory and statistics: computing probabilities in basic models; understanding what is joint probability, conditional probability, random variable; knowing basic distributions (uniform, exponential, binomial); etc.
      • information theory: familiarity with concepts such as entropy and mutual information
      • cryptography, computer and network security: basic knowledge of cryptographic primitives such as symmetric key encryption, hash functions, and digital signatures; and of internet protocols, such as TLS or SSH.

      Students lacking parts of this background will also be able to follow the course – with a bit of preparation they can quickly be up to speed with the basic background knowledge required.

      Onderwijsleeractiviteiten

      Privacy Technologies: Lectures (B-KUL-H09L2a)

      1.8 ECTS : Lecture 14 First termFirst term
      N. |  Das Debajyoti (substitute)

      Content

      This course provides an introduction to privacy technologies. We will explain the various types of privacy risks and introduce a range of existing privacy technologies that address these risks. These include:        

      • cryptographic protocols with applications to privacy, including: private information retrieval, oblivious transfer, anonymous e-cash, anonymous authentication, and private search.        
      • privacy engineering, including: privacy in agile frameworks, introduction to anonymous communication systems.
      • database privacy & data anonymization, including: k-anonymization, re-identification algorithms, and differential privacy.       
      • ML/AI privacy, including: privacy preserving ML/AI and ML/AI for privacy.
      • web privacy, including: web tracking techniques, cookies, device fingerprinting.
      • legal aspects of privacy, including: GDPR and Human Rights legal frameworks.

       

      Course material

      Slides, notes, and research articles for further reading.

      Format: more information

      The lectures are interactive. Students are expected to ask and answer questions and actively participate in class discussions.

      Privacy Technologies: Exercises and Laboratory Sessions (B-KUL-H09L3a)

      1.2 ECTS : Practical 21 First termFirst term
      N. |  Das Debajyoti (substitute)

      Content

      There will be four exercise sessions in total.

      Session 1: Privacy scandals session (1 point)

      In this session students give a presentation (of a few minutes) on a privacy scandal of their choice. To prepare for this session, the student must search online news and documentation of a high-profile incident of the last year that violated the privacy of a person or a group of people. Examples of incidents may include data breaches, unlawful data saring/use practices by organizations, or any other event. During the session the student should explain the story of the incident, the reasons (e.g., some security vulnerability), and the consequences.  

      Sessions 2 & 3: Assignment feedback sessions (no points)

      In these two sessions students work in groups of about 4 people. Each student takes about half an hour to explain to the others in the group the topic they have chosen for their assignment and their approach to addressing that problem. Students discuss and give feedback to each other on their respective assignments. 

      Session 4: Assignment presentation session (4 points)

      In this session students will have a few minutes to present their assignment to the lecturers and TAs of the course, who may ask questions and give feedback to the students. The students will still have some days to finalize the assignment incorporating the received feedback and addressing issues identified during the presentation. 

      Course material

      Scientific articles, software tools. 

      Evaluatieactiviteiten

      Evaluation: Privacy Technologies (B-KUL-H29L2a)

      Type : Continuous assessment without exam during the examination period
      Description of evaluation : Paper/Project, Report, Presentation
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      The final grades in a scale of 20 points will be computed as follows:     

      • [1 pt] For the presentations of the privacy scandals exercise session (see exercise sessions). 
      • [4 pt] For the assigment presentation (see exercise sessions). 
      • [15 pt] For the final written assignment. 

      The assignment is a paper that motivates, designs and evaluates a privacy-enhanced system, including: 

      • Define a functionality, system model, assumptions, privacy/security properties, and threat model
      • Define an architecture combining building blocks (technologies, protocols) seen in the lectures 
      • Discuss/argue which desired security/privacy properties are achieved and which are not achieved 

      Students can work either individually or in pairs to write an paper of between 3500 and 4500 words. The final version of the paper must be submitted before the start of the January examination period. The presentation of the assigment takes place in December so that students can receive feedback before they finalize and submit their final paper. 

       

      Information about retaking exams

      In the second chance, all 20 points are evaluated on the basis of the written assignment. The deadline for submitting the assignent is BEFORE the start of the examination period (last day before the examination period starts). 

      ECTS e-Security (B-KUL-H09L4A)

      3 ECTS English 28 First termFirst term

      Aims

      After succesful completion of this OPO, the student

      • understands the basic types of access rights;
      • knows the following important security policies and policy frameworks: Bell-LaPadula, Biba, Chinese Wall, Clark-Wilson;
      • understands the basic concepts of Unix security, Windows security, database security, software security.

      In addition, the student sees how modern computer applications are plagued by re-incarnations of old security problems. In particular, the student

      • understands various network security problems (TCP SYN flooding, DNS cache poisoning);
      • understands web security problems and solutions (XSS, CSRF, same-origin policies, sandboxing).

      Finally, the student can assess the risks and threats of a given scenario, design a security policy and propose security mechanisms to implement the security policy.

      Previous knowledge

      The students understand a standard computer architecture and its operation. The students can read and understand code snippets written in a modern programming language (Java, C).

      Onderwijsleeractiviteiten

      e-Security: Lectures (B-KUL-H09L4a)

      2.41 ECTS : Lecture 18 First termFirst term

      Content

      The course covers theoretical concepts like access control matrices and security policies. We also study the design of secure systems and security evaluation principles.

      The theory is illustrated by classical examples like Unix security, Windows security, software security, and by more modern examples like network security, web security, e-commerce, digital right management (DRM).

      The lectures cover all the topics of the course.

      Course material

      Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      This course is new; there are no course notes yet. We'll follow closely the following book:

      Dieter Gollmann, Computer Security (3rd edition), Wiley, ISBN 978-0-470-74115-3.  

      The students will get copies of the slides. There will be a list of references.

      Language of instruction: more information

      The teacher is a native Dutch speaker. Students may choose to communicate in Dutch instead of English.

      e-Security: Exercises and Lab Sessions (B-KUL-H09L5a)

      0.59 ECTS : Practical 10 First termFirst term

      Content

      The lab sessions illustrate the concepts covered in the lectures:

      • Web security and database security
      • Network enumeration and network security challenges
      • Software security
      • Operating system security and privilege escalation

       

      Course material

      The students are to bring their laptop computers. Images of virtual machines will be provided in order to run the experiments.

      Format: more information

      The students will deliver a written report. (no presentation required)

      Evaluatieactiviteiten

      Evaluation: e-Security (B-KUL-H29L4a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written
      Type of questions : Open questions

      ECTS P&D Electronics and Chip Design (B-KUL-H09L9A)

      6 ECTS English 120 Second termSecond term Cannot be taken as part of an examination contract

      Aims

      Students learn to design a mixed-signal integrated circuit, starting from system-level specifications down to IC simulations and HDL design and test. 

      Order of Enrolment



      (SIMULTANEOUS (H09J4A) OR SIMULTANEOUS (H05C9A)) AND (SIMULTANEOUS (H09J6A) OR SIMULTANEOUS (H09I0A)) AND (SIMULTANEOUS(H0E92A) OR SIMULTANEOUS (H0E83A)) AND (SIMULTANEOUS (H05F1A) OR SIMULTANEOUS (H05F3A)) AND (SIMULTANEOUS (H06A3A) OR SIMULTANEOUS (H05B3A)) AND (SIMULTANEOUS (H05D3A) OR SIMULTANEOUS (H05D5A)) AND (SIMULTANEOUS (H09K1A) OR SIMULTANEOUS (H09I5A)) AND (SIMULTANEOUS (H05E3A) OR SIMULTANEOUS (H05G8A)) AND SIMULTANEOUS (H05K2A) AND SIMULTANEOUS (H05J1A)


      H09J4AH09J4A : Building Blocks for Telecom Systems
      H05C9AH05C9A : Bouwblokken voor telecomsystemen
      H09J6AH09J6A : Design of Digital Platforms
      H09I0AH09I0A : Ontwerp van digitale platformen
      H0E92AH0E92A : Design and Implementation of Analog Circuits
      H0E83AH0E83A : Ontwerp en implementatie van analoge schakelingen
      H05F1AH05F1A : Digital Signal Processing for Communications and Information Systems
      H05F3AH05F3A : Digitale signaalverwerking voor communicatie- en informatiesystemen
      H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing
      H05B3AH05B3A : Analoge en gemengde bouwblokken voor signaalverwerking
      H05D3AH05D3A : Computer Architectures
      H05D5AH05D5A : Computerarchitecturen
      H09K1AH09K1A : Design of Digital Integrated Circuits
      H09I5AH09I5A : Ontwerp van digitale geïntegreerde schakelingen
      H05E3AH05E3A : Design of Analog and Mixed-Signal Integrated Circuits
      H05G8AH05G8A : Ontwerp van analoge en gemengd-signaal geïntegreerde schakelingen
      H05K2AH05K2A : Antennas for PCBs, Microelectronics and Nanotechnology
      H05J1AH05J1A : Technology for Microelectronics

      Is included in these courses of study

      Onderwijsleeractiviteiten

      P&D Electronics and Chip Design (B-KUL-H09L9a)

      6 ECTS : Assignment 120 Second termSecond term

      Content

      Design of an GMSK receiver in predictive CMOS:

      • Trade-off performance vs resource use in high-level matlab model 
      • Design and simulate analog-front-end in predictive CMOS technology 
      • Design and simulate digital signal processing in VHDL language 
      • Test digital HDL on mimicking platform using a Spartan-3 FPGA

      Evaluatieactiviteiten

      Evaluation: P&D Electronics and Chip Design (B-KUL-H29L9a)

      Type : Continuous assessment without exam during the examination period
      Description of evaluation : Report, Presentation, Participation during contact hours
      Learning material : Reference work

      Explanation

      Students write a report and give a presentation about their design at the end of the project.  

      If, for reasons of force majeure, the faculty decides that on-campus presentations are not allowed, the presentation will be replaced by an online presentation. The impact of this decision will be explained on Toledo.

      Information about retaking exams

      Depending on the reasons for failure, an extra specific assignment will be given. This assignment must be completed within one month.

      ECTS P&D Information Systems and Signal Processing (B-KUL-H09M0A)

      6 ECTS English 120 Second termSecond term Cannot be taken as part of an examination contract

      Aims

      After successfully completing this course, the student can

      • design an electrotechnical system, selecting the algorithm as well as the (hyper)parameters;
      • implement the system;
      • collaborate with a colleague to design and test an implementation.

       

      Previous knowledge

      The student has acquired the basic knowledge of signal processing and machine learning, as covered in the first stage of the master.

      Order of Enrolment



      (SIMULTANEOUS (H06A3A) OR SIMULTANEOUS (H05B3A)) AND (SIMULTANEOUS (H05A0A) OR SIMULTANEOUS (H05B6A)) AND (SIMULTANEOUS (H09J6A) OR SIMULTANEOUS (H09I0A)) AND (SIMULTANEOUS (H05F1A) OR SIMULTANEOUS (H05F3A)) AND (SIMULTANEOUS (H05D3A) OR SIMULTANEOUS (H05D5A)) AND (SIMULTANEOUS (H05G6A) OR SIMULTANEOUS (H09P9A)) AND (SIMULTANEOUS (H05I9A) OR SIMULTANEOUS (H05I7A)) AND SIMULTANEOUS (H09J2A)


      H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing
      H05B3AH05B3A : Analoge en gemengde bouwblokken voor signaalverwerking
      H05A0AH05A0A : Analysis of Digital Communication Systems
      H05B6AH05B6A : Analyse van digitale communicatiesystemen
      H09J6AH09J6A : Design of Digital Platforms
      H09I0AH09I0A : Ontwerp van digitale platformen
      H05F1AH05F1A : Digital Signal Processing for Communications and Information Systems
      H05F3AH05F3A : Digitale signaalverwerking voor communicatie- en informatiesystemen
      H05D3AH05D3A : Computer Architectures
      H05D5AH05D5A : Computerarchitecturen
      H05G6AH05G6A : Multimedia-technologie en codering
      H09P9AH09P9A : Multimedia Technology and Coding
      H05I9AH05I9A : Stochastische signaal- en systeemanalyse
      H05I7AH05I7A : Stochastic Signal and System Analysis
      H09J2AH09J2A : Image Analysis and Understanding

      Is included in these courses of study

      Onderwijsleeractiviteiten

      P&D Information Systems and Signal Processing (B-KUL-H09M0a)

      6 ECTS : Assignment 120 Second termSecond term

      Content

      In this project, students learn to build an electrotechnical system, that takes signals from multiple sensors as input, analyses them and takes a relevant action based on this analysis.
      An example is a system that i) analyzes EEG input to infer which speaker a user is attending to, and ii) combines input from a microphone array to focus attention on that speaker by suppressing other sources using beam forming, e.g. in the context of hearing aids.
      This will combine aspects from signal processing, machine learning and system integration.

      Course material

      All necessary material is available on Toledo.

      Format: more information

      The students form teams of typically 2 people. A team develops and implements all aspects of the final system (both the signal processing and machine learning component). 

      Evaluatieactiviteiten

      Evaluation: P&D Information Systems and Signal Processing (B-KUL-H29M0a)

      Type : Continuous assessment without exam during the examination period
      Description of evaluation : Report, Presentation, Participation during contact hours

      Explanation

      The project work is evaluated by means of reports, presentations, demonstrations and permanent evaluation by the teaching team. To pass the course, the student must have developed sufficiently the different parts of the project, including both the algorithmic design as well as the practical implementation on PC.

      Information about retaking exams

      Depending on the reasons for failure, an extra specific assignment will be given.

      ECTS Engineering & Entrepreneurship (B-KUL-H09P4A)

      6 ECTS English 69 Second termSecond term Cannot be taken as part of an examination contract

      Aims

      The course explains and illustrates the role of leadership and technology in the entrepreneurial process.

      • The student can explain the key role of technology and engineering in entrepreneurship
      • The student is able to take advantage of market opportunities by planning, organizing, and employing several types of resources.
      • The student is able to clarify the role of and generate a business plan for an existing as well as a new to start-up company.
      • The student can clarify how different units within the company interact and how the company should position itself within a given market, based on the participation during the business games and the testimonies by the entrepreneurs to.
      • The student can explain the product development cycle and more specifically the creative phase following the need recognition and problem formulation stages. In this phase design concepts need to be conceived and assessed.
      • The student can indicate the techniques of Business Strategic Dialogues and the role of leadership in this.

      Previous knowledge

      Students are not allowed to follow the course H09Q1A ‘Leadership and Strategic Management’ (3 ECTS) nor H04V2A ‘Ontwerpmethodologieën’ (6 ECTS) when they subscribe this course.

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Business Simulations (B-KUL-H09P5a)

      1.5 ECTS : Assignment 30 Second termSecond term

      Content

      The ola consists of two games:

       

      • concurrent engineering game: this business simulation game makes students familiar with the important influence of organizational structures on the performance of project teams with parallel, interacting task responsibilities. The exercise consists of a 4 hours competitive product development effort set in a real life production facility.
      • business game: during this three day business game students have to organize themselves in teams or companies. They create a vision, set goals for their company, translate them in the normal activities of a company: hiring people, buying raw material, investing in machines, price setting, marketing, selling and delivering the products, production planning, etc. At the end of the game during a formal session what they hoped to reach and what has been reached is discussed.

      Course material

      Handouts made available to the students  before the start of the games.

      Format: more information

      Interactive business simulation games: presence is obligatory.

      Is also included in other courses

      H09Q1A : Leadership and Strategic Management

      Strategic Management (B-KUL-H09P8a)

      1.5 ECTS : Lecture 15 Second termSecond term

      Content

      1. Leadership:How to define,types of profiles(inspirational,organisational),style
      2. Strategic Dialogues: Vision and Strategy as a tool to aline teams and lead the team to common goals.Technique of defining actual situation against strategic desired position (Ist/Soll) and definition of action programs to get there.
      3. What to do in global crises: short time survival to reach long term objectives (use of operational KPI's)
      4. Culture of enterpreneurship and commitment
      5. Why?(reason to exist),how?(values),what?(action plans)
      6. How evaluate (choose) the team and reward it?
      7. Priority setting (people,profit,planet?)
      8. Translation and communication of vision/strategy to affiliates and workfloor
      9. Role of innovation10. Case study of a company in Belgium

      Course material

      Handbook, texts and presentations

      Format: more information

      Mixture of classes and seminars

      Is also included in other courses

      H09Q1A : Leadership and Strategic Management

      Creativity and Decision Making for Product Development (B-KUL-H0T37a)

      2 ECTS : Lecture 12 Second termSecond term

      Content

      1. Characteristics of design activities and systematic design procedures

      2. Creativity methods: including

      • Lateral thinking
      • Brainstorming
      • Synectics
      • Biomimicry, biologically inspired design
      • Combinatorial concept generation
      • Morphological analysis

            and creativity quantification

      3.   Design by Analogy and Systematic biologically inspired design

      4.  Theory of Inventive Problem Solving :TIPS / TRIZ

      5.  Open innovation and lead users

      6.  Design evaluation methods and decision theory

      • Design axioms
      • Decision matrices
      • Decision theory
      • Multi-criteria decision making

      Course material

      Handouts and selected articles

      Technology & Entrepreneurship: Case Studies (B-KUL-H0T38a)

      1 ECTS : Lecture 12 Second termSecond term

      Content

      Testimonies on the role of engineering and technology in the start-up of technology spin-offs. Leading entrepreneurs of technology spin-off companies will be invited to contribute to this seminar lectures.

      Course material

      Byers, T.H. Dorf, R.C., & Nelson, A.J. (2010). Technology ventures: From idea to enterprise (3rd ed.). New York: McGraw-Hill.

      Handouts of the presentations.

      Evaluatieactiviteiten

      Evaluation: Engineering & Entrepreneurship (B-KUL-H29P4a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written, Paper/Project, Presentation, Participation during contact hours
      Type of questions : Open questions

      Explanation

       

      • ‘Business Simulations’: continuous assessment based on participation
      • ‘Strategic Management’ and ‘Creativity and decision making for product development’: written exam during the exam session, open questions
      • ‘Technology & Entrepreneurship: case studies’: short paper on a case study
      • One of the business games takes place during three consecutive days. This game is graded based on participation.

      Not participating in one of the diffferent parts results in failing this course. There is no possibility of taking a second exam session for the Business Simulations in September.

      If the faculty decides that the business games cannot go ahead in their current form due to unavoidable external factors, compulsory attendance will be waived. The business games will then not be included in the assessment of this course.

       

       

       

      Information about retaking exams

      You cannot retake the business games in the September exam session, since they exist of continuous assessment during a large scale group event. However, you can retake the course modules ‘Strategic Management’, ‘Creativity and Decision Making for Product Development’ and ‘Technology & Entrepreneurship’.

      ECTS Multimedia Technology and Coding (B-KUL-H09P9A)

      3 ECTS English 28 Second termSecond term

      Aims

      After successfully completing this course, the student can

      • describe the features and the working of the current technology used for multimedia;
      • specify hardware systems for multimedia applications;
      • critically evaluate new technologies for multimedia devices.

      Previous knowledge

      The student has acquired the basic knowledge of system theory, signal processing, software and electronics, as covered for instance in the bachelor Electrical Engineering.

      Identical courses

      H05G6A: Multimedia-technologie en codering

      Onderwijsleeractiviteiten

      Multimedia Technology and Coding: Lecture (B-KUL-H09P9a)

      2.41 ECTS : Lecture 18 Second termSecond term

      Content

      In the lectures the different multimedia components of a system and their standards will be looked at. The recording and reproduction of text, speech/audio, images/video and virtual reality will be discussed. Starting from the human being as an observer and from the specific characteristics of multimedia data, their digital presentation and I/O possibilities will be explained. Current multimedia standards will also be discussed.

      Course material

      The syllabus is the set of slides used in the lecture. They are available from VTK and on Toledo.

      Multimedia Technology and Coding: Exercises and Laboratory Sessions (B-KUL-H09Q0a)

      0.59 ECTS : Assignment 10 Second termSecond term

      Content

      The student carries out an individual project, in which he/she formulates the detailed specifications of a multimedia system.

      Course material

      Toledo is used to provide and exchange all material.

      Format: more information

      As a project work, each student specifies a part of a multimedia system. After comparing suitable implementation techniques, he/she proposes a motivated choice and presents a solution using existing hardware components.
      The date to hand in the project report will be posted on Toledo.

      Evaluatieactiviteiten

      Evaluation: Multimedia Technology and Coding (B-KUL-H29P9a)

      Type : Exam during the examination period
      Description of evaluation : Written
      Type of questions : Open questions
      Learning material : None

      Explanation

      The exam syllabus consists of the slide contents discussed during the lecture.
      The project is assigned during the semester.
      The project counts for 5 points, the exam for 15 points.

       

      Information about retaking exams

      When retaking the exam, no new project is made and the score of the project is reused. However, the student can ask to redo the project. In that case, his/her request must reach the lecturer at least 3 weeks before the exam.

      ECTS Computer Algebra for Cryptography (B-KUL-H0E74A)

      3 ECTS English 38 Second termSecond term Cannot be taken as part of an examination contract

      Aims

      Computer algebra is the area of computer science that develops tools and algorithms for symbolic and therefore exact computations which are fundamental for cryptography and coding theory. The approach and algorithms are totally different from numerical analysis that provides algorithms for approximate solutions. The goal of this course is to give a thorough introduction to computer algebra algorithms and their complexity, motivated by applications in engineering with an emphasis on applications in cryptography. At the end of the course the student should be able to:

      • Understand and explain how theorems from algebra can be used in the design of algorithms and how their complexity is influenced by the theory.
      • Perform an asymptotic complexity analysis and understand the difference with practical efficiency and the need for crossovers between multiple algorithms.
      • Design and implement computer algebra algorithms in Magma to solve real life problems in engineering, more particular cryptography, and evaluate their efficiency. 

      • Consult and comprehend recent scientific literature in computer algebra and assess the results described. 


      Previous knowledge

      Basic knowledge of algebra (e.g. H01G5A) including finite fields, polynomial rings and ideals.

      Identical courses

      H0E78A: Computeralgebra voor cryptografie

      Onderwijsleeractiviteiten

      Computer Algebra for Cryptography: Lecture (B-KUL-H0E74a)

      2 ECTS : Lecture 18 Second termSecond term

      Content

      • Introduction and overview of the course. Fundamental algorithms, complexity notation, addition and multiplication of numbers and polynomials, GCD, Chinese Remainder Theorem.

      • Fast multiplication and division: evaluation/interpolation approach, Karatsuba, Toom- Cook, DFT & FFT, Schönhage & Strassen, quotient & remainder via Newton iteration. Applications: Shamir secret sharing, ring-LWE cryptosystem.
      • Euclid’s algorithm and resultants: XGCD algorithm, modular arithmetic, resultant, modular GCD algorithm.
Applications: rational approximation, continued fractions, intersections of curves, implicitization of parametric curves.
      • Primality testing and factorisation algorithms: Fermat’s test, Carmichael numbers, Miller- Rabin, Pollard Rho, difference of squares, group based methods (p-1 method, elliptic curve method), introduction to quadratic sieve and number field sieve.
Applications: RSA and Paillier cryptosystems.
      • Short vectors in lattices: lattices, lattice minima, Minkowski’s theorems, Gaussian heuristic, lattice reductions algorithms (LLL, BKZ), ideal lattices.
Applications: short dependence relations, breaking knapsack cryptosystems, NTRU, small roots of modular polynomials, Coppersmith’s algorithm, security of RSA with small exponent.
      • Polynomials: fast evaluation & interpolation, factorisation (square-free, distinct degree, equal degree), Berlekamp’s algorithm, Hensel lifting and factorisation of polynomials over Z.
Applications: solving approximate GCD problem, error correcting codes.
      • Gröbner bases: polynomial ideals, monomial orders, division with remainder, Hilbert’s basis theorem, Gröbner bases and S-polynomials, Buchberger’s algorithm, degree of regularity.
Applications: solving systems of non-linear equations, algebraic attacks on multivariate cryptography, robotics (inverse kinematics problem).

      Course material

      • A full set of course notes written in English will be provided. 

      • Main additional reference: Modern Computer Algebra (3rd edition) by von zur Gathen and 
Gerhard. 

      • Applications reference: Algorithmic Cryptanalysis by Antoine Joux.

      Format: more information

      Goal of lectures: formulate computational problem motivated by application example, provide possible solution strategies, recall or introduce necessary theory from algebra (without proof), deduce algorithms and compute their complexity. Discuss efficiency in practice and possible further improvements, provide an overview of the state of the art and indicate differences with the algorithms described in lectures. 
Focus is on how (mostly) simple theorems from algebra lead to efficient algorithms, their complexity, practical performance and applications.

      Computer Algebra for Cryptography: Exercises and Laboratory Sessions (B-KUL-H0E75a)

      1 ECTS : Practical 20 Second termSecond term

      Content

      There will be 8 supervised exercise sessions of 2.5 hours each using the computer algebra system Magma. The goal is to familiarize the students with real implementations of the algorithms described in the lectures and to assess their efficiency on practical problems. 
Each student (individually) will have to solve two medium-sized projects (4 exercise sessions per project). These projects will be based on open research questions where (partial) solutions can be devised using the algorithms described in the lectures. The student will need to consult existing literature (references will be provided), devise his/her own solution, implement it in the Magma language and hand in a written report on the solution strategies and implementation results.

      Course material

      An introduction to the Magma language will be provided and the full Magma manual can be accessed online.

      Problem sheets and pointers to the literature will be provided beforehand so the students can familiarize themselves with the projects.

      Format: more information

      The first 0.5 hours will consist of a quick overview of the Magma implementations of the algorithms described in the previous lectures. The remaining time the student has the opportunity to work on solving the two projects (4 sessions per project) and ask questions/feedback from the supervisor.

      Evaluatieactiviteiten

      Evaluation: Computer Algebra for Cryptography (B-KUL-H2E74a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Oral, Paper/Project
      Type of questions : Open questions
      Learning material : Course material, Reference work

      Explanation

      The evaluation is based on two projects, where both Magma code and a short project report are required detailing the approach and the results obtained. The deadline for the first project is set at the start of the 5th exercise session and the deadline for the second project is at the end of the course.

      There will an oral exam where the student is asked to explain his/her work, to test the student’s insights and to provide feedback. Each project accounts for 35% of the final mark (quality and efficiency of the code provided and an evaluation of the written report), and the oral exam for the remaining 30%.

      Information about retaking exams

      The evaluation consists of continuous assessment on the basis of the two projects described above. If the student fails during the 1st exam opportunity, he/she will have to solve a third project and explain it during a new oral exam.

      ECTS Model Predictive Control (B-KUL-H0E76A)

      4 ECTS English 35 First termFirst term Cannot be taken as part of an examination contract

      Aims

      This course aims at presenting an overview of real-time optimization-based control of dynamical systems, also known as model predictive control (MPC). It presents system-theoretic properties of MPC, such as stability, invariance, offset-free control, regulation and tracking, as well as numerical algorithms for solving the resulting optimal control problems. The focus is on both linear and nonlinear, continuous-time and discrete-time systems in state-space form. A number of case studies is presented, ranging from attitude and navigation control of quadcopters, collision avoidance for autonomous vehicles and hybrid vehicle control to multiperiod portfolio optimization, power dispatch in smart grids.

      Finally, the student will gain both a deep theoretical understanding of the main principles as well as practical experience with MPC through an assignment consisting of a series of theoretical exercises and an MPC design project applied to autonomous racing. 

      Previous knowledge

      optimization, numerical linear algebra, basic systems & control theory

      Onderwijsleeractiviteiten

      Model Predictive Control: Lecture (B-KUL-H0E76a)

      2 ECTS : Lecture 20 First termFirst term

      Content

      • Introduction to Optimal control
 modeling for control; state-space models; discrete-time optimal control; linear & nonlinear optimal control; dynamic programming; direct methods for optimal control. 

      • Model predictive control
 receding horizon principle; Lyapunov stability; constraint satisfaction & invariance; tracking and offset free MPC; robust & stochastic MPC; modeling hybrid systems and logic. 

      • State estimation
 (extended) Kalman filtering; moving horizon estimation; output feedback MPC. 

      • Numerical Optimal control
 active set & interior point methods; sequential quadratic programming; augmented Lagrangian methods; proximal algorithms; mixed-integer optimization. 

      Course material

      Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      Model Predictive Control: Exercises and Laboratory Sessions (B-KUL-H0E77a)

      2 ECTS : Practical 15 First termFirst term

      Content

      The sessions consist of exercises on the topics from the lectures. An assignment of a simulation based project providing practical experience with MPC using the tools from the exercise sessions is given during the first half of the semester. This assignment will be graded.

      Evaluatieactiviteiten

      Evaluation: Model Predictive Control (B-KUL-H2E76a)

      Type : Exam during the examination period
      Description of evaluation : Written
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      The grading consists of two parts: a written exam (theoretical) and a grade for the assignment based on a written report.

      ECTS Hardware Security (B-KUL-H0E85A)

      3 ECTS English 28 Second termSecond term Cannot be taken as part of an examination contract
      N. |  Gierlichs Benedikt (substitute)

      Aims

      The aim of the course is to learn to design secure and trustworthy hardware.  Hardware security is the root of trust for most digital systems: it is required in main frames, cloud servers, mobile devices as well as sensor nodes and internet-of-thing devices.

      Hardware design for security covers both the analysis of weaknesses and attacks as well as countermeasures to protect designs in hardware. Students will study essential hardware roots of trust upon which secure systems can be built. Hardware design, attacks and countermeasures also cover many different abstraction levels from computer architectures down to circuits and transistors.

      Previous knowledge

      The student should have obtained the credits for the following course:

      • H09J6A Design of digital platforms (or H09I0A Ontwerp van Digitale platformen)

      The student should take the following course in parallel or have obtained credits on an equivalent course before:

      • H05D3A Computer architectures (or H05D5A Computerarchitecturen)

      If the student has followed equivalent courses, then the permission from the instructor is required.

      Order of Enrolment



      (SIMULTANEOUS(H09J6A) OR SIMULTANEOUS(H09I0A)) AND ( SIMULTANEOUS(H05D3A) OR SIMULTANEOUS(H05D5A))


      H09J6AH09J6A : Design of Digital Platforms
      H09I0AH09I0A : Ontwerp van digitale platformen
      H05D3AH05D3A : Computer Architectures
      H05D5AH05D5A : Computerarchitecturen

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Hardware Security: Lecture (B-KUL-H0E85a)

      2.41 ECTS : Lecture 18 Second termSecond term
      N. |  Gierlichs Benedikt (substitute)

      Content

      During the lectures, students will learn the different aspects of hardware security. The course topics grouped into the following main parts:

      • Part 1: Introduction: definition of security, trust, trustworthy, trusted computing, etc.
      • Part 2: Attacks on hardware platforms and embedded systems. Attackers will go for the weakest link: how can one identify them, what are the attacker capabilities.
      • Part 3: Design methodology. In general hardware design covers many different abstraction layers. This is applied in the context for design for security.
      • Part 4: Hardware security building blocks. Essential building blocks to support hardware and system security are introduced. Examples are: trusted platform architectures to support software security, building blocks for efficient and secure implementation of cryptographic algorithms, countermeasures against side-channel and fault attacks, hardware roots of trust including true random number generators and Physically Unclonable Functions.
      • Part 5: Applications and recent developments

      Course material

      Lecture notes, presentation slides, ad-hoc material available through Toledo

      Hardware Security: Exercises and Practica (B-KUL-H0E86a)

      0.59 ECTS : Practical 10 Second termSecond term
      N. |  Gierlichs Benedikt (substitute)

      Content

      Pen and paper exercises as well as computer exercises to practice the different aspects of the course: attacks, countermeasures and building blocks for security.

      Course material

      Ad-hoc material available on Toledo

      Evaluatieactiviteiten

      Evaluation: Hardware Security (B-KUL-H2E85a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written, Report, Presentation
      Type of questions : Open questions
      Learning material : Course material, Calculator

      Explanation

      Evaluation of this course consists of two parts. Maximum score is 20 points:

      • One part (4 points) is evaluated with permanent evaluation. This part consists of a presentation of a research paper during the lectures and the collaboration and participation during the exercise sessions. Details about the evaluation will be announced on Toledo.
      • One part (16 points) is evaluated during the examination period. This part is an open-book exam. It is a written exam.

      ECTS P&D Power Systems & Automation (B-KUL-H0E88A)

      6 ECTS English 120 Second termSecond term
      Van Hertem Dirk (coordinator) |  Beerten Jef |  Van Hertem Dirk

      Aims

      The student is able to analyse problems, and design solutions in fields that bring together different aspects of power systems and automation, and this by performing different engineering studies of an offshore wind farm. Starting from a hypothetical or actual offshore wind farm concession, the objective is to come up with a detailed plan, backed with the necessary analysis, simulations and laboratory simulations.

      The assignments are given to small groups (2-3-4 persons).  

      The students/groups are required to:

      • Design the wind farm so that it can export peak generation
        • Line diagram from turbine to the onshore substation
        • Utilize the correct standards for component identification
      • Size and select all the components 
        • Primary equipment: Wind turbines, cables, circuit breakers, reactive power devices, etc.
        • Secondary equipment: Protection devices, CT, PT
      • Simulate the grid in Matlab/Simulink with simpowersystems
      • Convert the simulation to run on RT-Lab to allow for real time digital simulation
      • Design the testing procedure that will ensure correct functionality of your protection IED


      At the end of this project, we the students should have: 

      • Gained a more practical understanding of the design of a power system
        • Sizing cables and components
        • Complying to grid codes
      • Gained a deeper understanding on offshore wind farms
        • Optimization of wind turbine location/size
        • Optimization of cable layout based on cost, reliability and power loss
        • Substation design and optimization
      • Applied theoretical concepts and knowledge from "power system calculations" and "power systems" to a concrete case 
      • Gained practical knowledge of how to set up a real time simulator while understanding the pros and cons of using real time simulation
      • Gained experience with setting up tests on a Siemens IED
      • Gotten familiar with the concept of digital substations
      • Gained experience in writing a technical report and presenting it to a jury

      Previous knowledge

      Basic notions of power systems and automation (control theory, power electronics, …)  In particular, the students should have experience in basic power system technology (as in H04A0A) and power system calculations (as in H04A9A). Also experience in renewable generation technology is advised (recommended to have a followed the course of renewable energy, or follow H00S7A in parallel).

       

       

       

       

       

       

       

       

       

      Is included in these courses of study

      Onderwijsleeractiviteiten

      P&D Power Systems & Automation (B-KUL-H0E88a)

      6 ECTS : Assignment 120 Second termSecond term

      Content

      The student is able to analyse problems, and design solutions in fields that bring together different aspects of power systems and automation, and this by performing different engineering studies of an offshore wind farm. Starting from a hypothetical or actual offshore wind farm concession, the objective is to come up with a detailed plan, backed with the necessary analysis, simulations and laboratory simulations.

      The assignments are given to small groups (2-3-4 persons).  

      The students/groups are required to:

      • Design the wind farm so that it can export peak generation
        • Line diagram from turbine to the onshore substation
        • Utilize the correct standards for component identification
      • Size and select all the components 
        • Primary equipment: Wind turbines, cables, circuit breakers, reactive power devices, etc.
        • Secondary equipment: Protection devices, CT, PT
      • Simulate the grid in Matlab/Simulink with simpowersystems
      • Convert the simulation to run on RT-Lab to allow for real time digital simulation
      • Design the testing procedure that will ensure correct functionality of your protection IED


      At the end of this project, we the students should have: 

      • Gained a more practical understanding of the design of a power system
      • Sizing cables and components
      • Complying to grid codes
      • Gained a deeper understanding on offshore wind farms
      • Optimization of wind turbine location/size
      • Optimization of cable layout based on cost, reliability and power loss
      • Substation design and optimization
      • Applied theoretical concepts and knowledge from "power system calculations" and "power systems" to a concrete case 
      • Gained practical knowledge of how to set up a real time simulator while understanding the pros and cons of using real time simulation
      • Gained experience with setting up tests on a Siemens IED
      • Gotten familiar with the concept of digital substations
      • Gained experience in writing a technical report and presenting it to a jury

      Course material

      Handouts and background reading

      There will be number of guest lectures from experts from industry and academia. 

      Background reading will be provided.

      Language of instruction: more information

       

       

      Format: more information

      Small groups will work on a particular design to deliver a report on the design of an offshore wind farm. Selected guest lecturers will present background information.

      Evaluatieactiviteiten

      Evaluation: P&D Power Systems & Automation (B-KUL-H2E88a)

      Type : Continuous assessment without exam during the examination period
      Description of evaluation : Report, Presentation, Self assessment/Peer assessment, Participation during contact hours

      Explanation

      The exam consists of:

      • Intermediate presentation (before the Easter break)
      • Final report + presentation of the report
      • Evaluation of the implementation in the real-time laboratory

       

      Information about retaking exams

      A specific arrangement will be made based on the outcomes of the evaluation and the results already obtained.

      ECTS Mobile Networks (B-KUL-H0E89A)

      6 ECTS English 56 Second termSecond term

      Aims

      This course will give a complete overview of mobile and wireless communication networks. A cellular communication system is one of the most complex systems designed by engineers, combining the most advanced hardware, protocols, applications and business models in a world-wide network. In addition to the cellular 2G/3G/4G/5G networks, there are multiple important local wireless communication techniques to connect anything, anywhere, anytime. These techniques are for instance Wi-Fi, sensor networks, public safety networks or body area networks. The objective of this course is giving insight into all these systems, and focus on the most important challenges in terms of hardware, software, protocols or even business aspects. After completing this overview course, students will have insight into the telecom systems, standards, the business aspects, and research challenges.

      After completion of this course:

      - The student understands the fundamental principles and subsystems of a mobile and wireless communication system: the radio access network and the core network.

      - The student has a solid knowledge of the wireless communication performance models and understands how fading, diversity and multiple antennas impact wireless capacity.

      - The student knows the most important technologies for mobile communication and the building blocks of a wireless network, and can explain then properly. The pros and cons of each system are well understood, and the student can determine the best solution for a given application. The student knows the most important standards used in the field and can also evaluate new technologies using proper analytical models.

      - The student understands the basic principles behind computer networking, and how they are instantiated in the Internet and the mobile core network. The student understands historical protocol stacks, as well as future networking trends.

      - The student is able to understand research papers related to mobile and wireless communication, and evaluate them with respect to relevance, importance, correctness and implementation complexity. The student can find novel material if needed to support that evaluation.

      - The student can understand the complexity in terms of hardware, algorithms or signal processing or software of a novel communication paradigm.

      - The student has sufficient knowledge of the basic terminology to be able to follow a manual to configure a basestation for 2G or 4G cellular communication.

      Previous knowledge

      The course main objective is showing how important disciplines relevant for wireless and mobile communication can be combined in a complex and practical system. Background in these disciplines is useful (analysis of digital communication (H05A0A), signal processing (H05F1A)and building blocks (H09J4A), electromagnetic propagation (H05T0A)) but the course can be followed when not all these courses were taken.

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Mobile Networks: Lecture (B-KUL-H0E89a)

      4.82 ECTS : Lecture 36 Second termSecond term

      Content

      The course consists of 10 lectures that will be devoted to communication fundamentals, covering both fundamental aspects of communication networks and the layered protocol stack, as well as fundamental aspects of wireless communication:

      Networking Fundamentals:

      • Basic principles and the protocol stack
      • Medium Access Control
      • Routing
      • QoS models and fairness
      • Resource allocation and advanced topics

      Wireless Communication Fundamentals:

      • Wireless communication principles and history
      • Fading models
      • Capacity fundamentals
      • Performance analysis and diversity
      • Multiple antenna technologies: capacity and performance analysis

      Then, about 8 lectures will discuss wireless communication technologies, such as 2G/3G/4G/5G as well as Wi-Fi. These will be discussed using the standard compliant terminology, focusing not only on theoretical insights but also practical and business implications. In addition, the course will spend sufficient time for discussing future trends, challenges and possible (r)evolutions in the wireless telecom industry.

      Mobile Networks and Technologies:

      • IoT, Bluetooth and 6LoWPAN
      • 2G
      • 3G/4G
      • 5G
      • Wi-Fi
      • Visible Light Communication
      • Software Defined Networking and Network Function Virtualisation
      • Fiber Networks: From FTTH to core network

      Course material

      Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      For the networking fundamentals, we will use the book “Communication Networks: A Concise Introduction by Jean Walrand and Shyam Parekh”

      For the wireless fundamentals, we will use the book “Wireless Communications by A. Goldsmith”

      For the mobile technologies, annotated slides will be distributed.

      Mobile Networks: Exercises (B-KUL-H0E90a)

      1.18 ECTS : Assignment 20 Second termSecond term

      Content

      In the time allocated for exercise activities, there will be a mix of exercise sessions related to performance modeling, and computer sessions where students will work with relevant simulation tools or program their own IoT network.

      Course material

      Exercise sessions will be provided on Toledo.

      Evaluatieactiviteiten

      Evaluation: Mobile Networks (B-KUL-H2E89a)

      Type : Exam during the examination period
      Description of evaluation : Oral
      Type of questions : Open questions
      Learning material : Course material, Calculator, Reference work

      Explanation

      The exam is oral with written preparation. 

      If, for reasons of force majeure, the faculty decides that the preparation time for an oral exam must be limited to less than an hour, the preparation time will be reduced. The impact of this decision will be explained on Toledo.

      ECTS P&D ICT Security and Networks (B-KUL-H0E91A)

      6 ECTS English 120 Second termSecond term Cannot be taken as part of an examination contract

      Aims

      After successfully completing this course, the student can

      • design the security architecture for a a real-time secure multimedia system, selecting the algorithms as well as the parameters;
      • implement the security functionality of a real-time secure multimedia system efficiently on programmable processors;
      • collaborate with a colleague to design and test the implementation.

      Previous knowledge

      The student has acquired the basic knowledge of digital hardware and cryptography, as covered in the first stage of this master.

      Order of Enrolment



      ( SIMULTANEOUS(H06A3A) OR SIMULTANEOUS(H05B3A)) AND ( SIMULTANEOUS(H05A0A) OR SIMULTANEOUS(H05B6A)) AND ( SIMULTANEOUS(H09J4A) OR SIMULTANEOUS(H05C9A)) AND ( SIMULTANEOUS(H09J6A) OR SIMULTANEOUS(H09I0A)) AND ( SIMULTANEOUS(H05F1A) OR SIMULTANEOUS(H05F3A)) AND ( SIMULTANEOUS(H05D3A) OR SIMULTANEOUS(H05D5A)) AND ( SIMULTANEOUS(H0E89A)) AND ( SIMULTANEOUS(H05D9A) OR SIMULTANEOUS(H05E1A)) AND ( SIMULTANEOUS(H05I9A) OR SIMULTANEOUS(H05I7A)) AND ( SIMULTANEOUS(H0T75A) OR SIMULTANEOUS(H05T0A))


      H06A3AH06A3A : Analog and Mixed-Signal Electronics for Signal Processing
      H05B3AH05B3A : Analoge en gemengde bouwblokken voor signaalverwerking
      H05A0AH05A0A : Analysis of Digital Communication Systems
      H05B6AH05B6A : Analyse van digitale communicatiesystemen
      H09J4AH09J4A : Building Blocks for Telecom Systems
      H05C9AH05C9A : Bouwblokken voor telecomsystemen
      H09J6AH09J6A : Design of Digital Platforms
      H09I0AH09I0A : Ontwerp van digitale platformen
      H05F1AH05F1A : Digital Signal Processing for Communications and Information Systems
      H05F3AH05F3A : Digitale signaalverwerking voor communicatie- en informatiesystemen
      H05D3AH05D3A : Computer Architectures
      H05D5AH05D5A : Computerarchitecturen
      H0E89AH0E89A : Mobile Networks
      H05D9AH05D9A : Cryptografie en netwerkbeveiliging
      H05E1AH05E1A : Cryptography and Network Security
      H05I9AH05I9A : Stochastische signaal- en systeemanalyse
      H05I7AH05I7A : Stochastic Signal and System Analysis
      H0T75AH0T75A : Elektromagnetische propagatie
      H05T0AH05T0A : Electromagnetic Propagation

      Is included in these courses of study

      Onderwijsleeractiviteiten

      P&D ICT Security and Networks (B-KUL-H0E91a)

      6 ECTS : Assignment 120 Second termSecond term

      Content

      For a secure real-time multimedia system, we have chosen a combination of digital signal processing of audio, cryptography, network communication and the combined hardware/software design. A candidate for this type of system is a secured speech communication system. The different tasks (such as compression and encryption) will be implemented on digital signal processors (DSP).

      Course material

      All necessary material is available on Toledo.

      Evaluatieactiviteiten

      Evaluation: P&D ICT Security and Networks (B-KUL-H2E91a)

      Type : Continuous assessment without exam during the examination period
      Description of evaluation : Report, Presentation, Participation during contact hours

      Explanation

      The project work is evaluated by means of reports, presentations and of permanent evaluation by the teaching team. To pass the course, the student must have developed sufficiently the three parts of the project (algorithmic design, PC implementation, optimisation for the DSP).

      Information about retaking exams

      Depending on the reasons for failure, an extra specific assignment will be given. This assignment must be completed within one month.

      ECTS Design and Implementation of Analog Circuits (B-KUL-H0E92A)

      6 ECTS English 56 First termFirst term

      Aims

      This course is about the design, the layout and the implementation analog circuits, with a strong emphasis on integrated transistorcircuits.

      The student understands the different trade-offs related to the design of a transistor circuit

      The student can design and optimize an analog amplifier for a given set of high-level specifications

      The students understand the benefits and drawbacks of feedback and can apply feedback on an analog circuit

      Previous knowledge

      The student can calculate and solve simple RLC networks and can draw the Bode-plot of these circuits

      The student has a basic knowledge of semiconductor physics and understands the working principles of a transistor.

      Identical courses

      H0E83A: Ontwerp en implementatie van analoge schakelingen

      Onderwijsleeractiviteiten

      Design and Implementation of Analog Circuits: Lectures (B-KUL-H0E92a)

      4.83 ECTS : Lecture 36 First termFirst term

      Content

      transistors: biasing and small signal models

      MOS transistor models: Weak inversion and velocity saturation

      Feedback: basics, stability, opamp basics

      Simple amplifier circuits: CS, CD, CG + extensions

      Current mirror + Cascode

      Differential Pair +Basic OTA

      Symmetrical OTA + Folded cascode OTA

      Two-stage OTA and Miller compensation

      Rail-to-Rail OTA

      Common-mode Feedback

      Noise in transistor circuits

      Distortion in transistor circuits

      Mismatch in transistor circuits

       

       

      Course material

      Course notes

      Design and Implementation of Analog Circuits: Project Work (B-KUL-H0E93a)

      1.17 ECTS : Practical 20 First termFirst term

      Content

      Design and implementation of an analog integrated amplifier

      1.       hand calculations

      2.       simulations: biasing

      3.       simulations: AC

      4.       simulations: transient and slew-rate

      5.       drawing the layout

      6.       drawing the layout

      7.       finishing chip

      8.       finishing chip + writing report

      Course material

      Course notes

      Evaluatieactiviteiten

      Evaluation: Design and Implementation of Analog Circuits (B-KUL-H2E92a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Oral, Project/Product, Report, Participation during contact hours
      Type of questions : Open questions, Closed questions
      Learning material : List of formulas, Calculator

      Explanation

      80% of the score (16/20) is on an oral defense exam with written preparation (2h preparation time)

      20% of the score (4/20) is on a design project, which includes the design of an analog integrated amplifier including the layout. This project is in a team of 2 or 3 students.

       

      Information about retaking exams

      The project (20% of the score) is in a teamwork and can therefore not be redone in the second examination period.

      ECTS Numerical Methods for Electrotechnical Applications (B-KUL-H0E94A)

      3 ECTS English 28 First termFirst term

      Aims

      The student learns the mathematical principles linked to numerical methods used to model, analyze and solve electrotechnical problems

      Starting from different governing equations in the energy science domain (in particular electromagnetics), the student recognizes the structure and common elements which lead to the formulation of a set of generic numerical discretization schemes. He/she can argue suitable choices for the formulation of partial differential equations and boundary conditions. The student is able to describe, explain and use different discretization techniques, but mainly  Finite elements (FE).

      Moreover he/she can perform a critical analysis of these discretisation methods in terms of accuracy, stability and convergence. The student understands and can discuss the potential and limitations of methods for numerical analysis.

      The student is able to give an overview of computational electromagnetic (EM) techniques for the simulation of electromagnetic problems.

      From the practical point of view, the student is able to:

      • Implement the numerical discretization of simple 1D and 2D problems in electromagnetism, simulate and analyse them.
      • Evaluate, choose and use specific software packages (either commercial or open source) to handle real-live applications. He/she understands the possible choices and approximations available in this kind of software.
      • Analyze and assess the reliability of his own results.

      At the end of the course the student will also have a general knowledge of modelling, simulation and design techniques.

      Previous knowledge

      Courses in mathematical and numerical analysis, algebra. Knowledge of the equations that govern/describe problems in electrotechnical systems, in particular, basic physics (including electromagnetism).

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Finite Elements for Electromagnetic Fields: Lecture (B-KUL-H04B7a)

      2.41 ECTS : Lecture 16 First termFirst term

      Content

      This course aims at providing a general overview of the different numerical methods available and commonly used to model and simulate electromagnetic devices in electrical energy applications.

      The main topics that will be tackled are:

      • electromagnetic field models: electrostatics, electrokinetics, electrodynamics, magnetostatics, magnetodynamics and wave propagation;
      • electromagnetic field and potential formulations;
      • permanent magnets;
      • stranded and massive coils (skin and proximity effects);
      • treatment of nonlinear materials (saturation, hysteresis);
      • computation of global quantities: lumped circuit elements (resistance, inductance, capacitance), flux linkage, Joule losses, iron losses, forces;
      • coupling of electromagnetic field and circuit models;
      • electro-mechanical models, motion of rigid bodies;
      • electro-thermal models;
      • optimization;

      Particular attention will be paid to state-of-the-art finite element techniques. Basic design rules forelectromagnetic systems are provided as well.

      Course material

      Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      Available on Toledo:

      • handouts and slides
      • articles and/or reports
      • background reading

      Is also included in other courses

      H9X34A : Numerical Methods in Energy Sciences

      Finite Elements for Electromagnetic Fields: Exercises (B-KUL-H04C0a)

      0.59 ECTS : Practical 12 First termFirst term

      Content

      Practical work consists in simulating different electromagnetic problems.

      During the simulation sessions, the open-source mesh generator Gmsh (http://geuz.org/gmsh) and the finite-element software GetDP (http://geuz.org/getdp) are used. Further, GetDP and Gmsh are integrated in ONELAB (http://onelab.info/wiki/Main_Page), the examples therein will be very helpful as well.

      For each considered application, the students must:

      • choose the most suitable finite-element electromagnetic formulation;
      • make the geometry and generate a well adapted mesh;
      • validate and analise the results;

      For a detailed analysis of the results, e.g. error computation, convergence, optimization, MATLAB (http://www.mathworks.nl) or Octave (http://www.gnu.org/software/octave/) can be used.

      Course material

      Available on Toledo:

      • lab detailed description
      • background reading: related articles and/or reports

      Computer

      Open-source software packages:

      • A mesher: Gmsh (http://geuz.org/gmsh)
      • A finite element solver: GetDP (http://geuz.org/getdp)

       

      Format: more information

      Modelling and solving real application problems by means of open-source software packages.

      Is also included in other courses

      H9X34A : Numerical Methods in Energy Sciences

      Evaluatieactiviteiten

      Evaluation: Numerical Methods for Electrotechnical Applications (B-KUL-H2E94a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written, Report
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      Written exam with open questions. Students will be able to use the material of the course during the examination.

      The electromagnetic simulation sessions and associated reports count for up to 5 points out of 20. The non-attendance to the labs and/or not handing in the corresponding report, without any valid justification, will be punished with 1 point penalty.

      ECTS Methods and Algorithms for Advanced Process Control (B-KUL-H0M82A)

      6 ECTS English 60 Second termSecond term Cannot be taken as part of an examination contract

      Aims

      This course provides an overview of the most important control methods currently in use. After an elaborated introduction on classical control technology, the course focuses on state feedback control. The students are taught the principles of model-based predictive control, as well as techniques for state estimation. The advantages and disadvantages of the different techniques are presented to give the students a view of which technique is the most appropriate for a given
      control problem. At the end of the course the students will be able to address complex multivariable control problems by using state-space feedback techniques and model predictive control strategies.

      Previous knowledge

      Skills: the student should be able to analyze, synthetisize and interpret
      Knowledge: Systems and control theory and linear algebra.

      Identical courses

      H03E8A: Computergestuurde regeltechniek

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Methods and Algorithms for Advanced Process Control: Lecture (B-KUL-H0M82a)

      3 ECTS : Lecture 40 Second termSecond term

      Content

      1. Introduction
      1.1. Brief review of Classical control theory
      1.2. Classical Control vs. Modern Control
      1.3. Real-life control examples
      1.4. System and Models: Taxonomy
      1.5. System modeling

      2. State-space representation
      2.1. Introduction
      2.2. Transfer function matrix and impulse response
      2.3. Linearization of nonlinear systems
      2.4. Discretization of continuous-time models
      2.5. Geometric properties of linear state-space models
      2.6. Similarity transformation
      2.7. Controllability
      2.8. Observability
      2.9. The Popov-Belevitch-Hautus tests (PBH)
      2.10. Stability, Stabilizability  and Detectability
      2.11. Kalman decomposition and minimal realization
      2.12. Input/output properties of state-space models

      3. State feedback controllers
      3.1.  Introduction
      3.2. Pole Placement method
      3.3. Linear Quadratic Regulator (LQR)

      4. Reference Introduction
      4.1. Introduction
      4.2. Reference Input - full state feedback
      4.3. Integral control and Robust Tracking

      5. State estimators
      5.1. Open-loop vs. Closed-loop estimators
      5.2. Estimator design via Pole Placement
      5.3. Optimal Estimator - Kalman filter

      6. Compensator design
      6.1. Generalities
      6.2. Separation Principle - Pole placement
      6.3. Linear Quadratic Gaussian (LQG) control
      6.4. Stochastic separation principle

      7. Model Predictive Control  (MPC)
      7.1. Introduction
      7.2. Receding horizon principle
      7.3. Different MPC formulations
      7.4. Terminal cost

      Course material

      Study cost: 1-10 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      The digital version of the course text (slides) is available in Toledo. 

      Format: more information

      Two lectures a week of two hours each.

      Methods and Algorithms for Advanced Process Control: Exercises and Laboratory Sessions (B-KUL-H0M83a)

      1 ECTS : Practical 20 Second termSecond term

      Content

      • 4 exercise sessions in a PC room. In 2 of these sessions the students are introduced to the design control problems that they have to tackle and from which they have to write reports.
      • Lab sessions (practicum) where the students have to deal with the real-time implementation of a control strategy for a mechanical setup

      Course material

      All the info about the exercise sessions and the practicum is available in Toledo.

      Methods and Algorithms for Advanced Process Control: Project (B-KUL-H0M84a)

      2 ECTS : Assignment 0 Second termSecond term

      Evaluatieactiviteiten

      Evaluation: Methods and Algorithms for Advanced Process Control (B-KUL-H2M82a)

      Type : Exam during the examination period
      Description of evaluation : Oral

      Explanation

      The evaluation consists of two assignments. In the first assignment, the students have to design and implement control systems within a simulation environment. In the second assignment, they have to develop a real-time control strategy for a mechanical setup available in the Lab. At the end of the course, the students have to present two written reports and they have to defend their design choices and results in an oral open-book exam. The students also have to answer some theoretical questions about the course. The assignments for the second examination period are analogous to those from the first one, and the evaluation criteria are the same.

      ECTS Distributed Systems (B-KUL-H0N08A)

      6 ECTS English 59 First termFirst term Cannot be taken as part of an examination contract
      Joosen Wouter (coordinator) |  Joosen Wouter |  Van Cutsem Tom

      Aims

      The course aims to familiarize students with distributed systems through a thorough study of architectures, algorithms and protocols used in distributed systems. Furthermore, students meet development and execution environments for distributed software. Based on the experience students gain from this, a more thorough insight is build in the challenges and solutions with the realization and usage of distributed software systems. The studied platforms illustrate the state of affairs and are used to map research challenges.

      Previous knowledge

      The student should possess sufficient knowledge on computer networks, should have had an introduction in operating systems and in object-oriented programming.

      Identical courses

      H04I4A: Gedistribueerde systemen

      Onderwijsleeractiviteiten

      Distributed Systems: Lecture (B-KUL-H0N08a)

      4 ECTS : Lecture 30 First termFirst term

      Content

      In a first step, attention will go to the architecture of distributed systems and to the non-functional demands that are often made. Next to this, the communication middleware will be dealt with extensively and as well as a number of classic distributed systems: file systems, name administrators.
      Next, a number of distributed algorithms will be discussed in detail: reciprocal exclusion, elections, global condition and transactions.

      Course material

      Study cost: 51-75 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      Distributed Systems: Exercises (B-KUL-H0N09a)

      1 ECTS : Practical 12 First termFirst term

      Content

      Exercises with the lecture Distributed Systems.

      Distributed Systems: Laboratory Session (B-KUL-H0N10a)

      1 ECTS : Practical 17 First termFirst term

      Content

      In these practical sessions, students familiarize themselves with about three (so-called middleware) platforms for distributed software. The first step is usually getting to know the basic functioning and principles of such platforms. In one more steps following this, students are asked to solve a simple and representative problem using this platform. The solution can consist of a design, a limited implementation or both. Similar solutions are used as guidelines for a number of exam questions.
      There are 3 practical sessions. For most exercises, proposed solutions should be handed in temporarily at the end of the supervised session, and a definitive version at the and of the week in which the practical session is planned.

      Evaluatieactiviteiten

      Evaluation: Distributed Systems (B-KUL-H2N08a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written
      Learning material : None, Reference work

      Explanation

      The permanent evaluation is based on mandatory lab sessions. Students have to deliver the results of these lab sessions in order to succeed for this course. After the submission of the lab results, students have to explain their results and lessons learned in one session.

      At the exam, students are asked to answer multiple questions that are based on the content of the lectures and the supporting course materials. The exam questions also relate to the content of the lab sessions.

      Information about retaking exams

      The exam in August/September is organized in the same way.

       

      ECTS Religions (B-KUL-H0N82A)

      3 ECTS English 20 Second termSecond term

      Aims

      Students aim at  

      • clarifying the functioning of religions and world views, especially the Christian religion, into culture and society;  
      • analyzing which anthropological stances and worldviews are present in society and culture (e.g. in media, health care, economy, technology, education) and critically reflecting on it;  
      • showing, explaining and illustrating the particularity of world views and religions, especially the Christian worldview;  
      • applying theoretical views from theology and religious sciences into actual societal debates;  
      • learning to know religious and ethical themes with regard to their own professional field and critically dealing with them;  
      • formulating a personal view about religions and world views in dialogue with the Christian faith in an argumentative manner:  
      • being capable to formulate the value of religion and world views for their own life;  
      • integrating religious and ethical dimensions in the development of their own professional identity

      KU Leuven Vision on Education and Learning

      Previous knowledge

      This course does not require specific prior knowledge. General knowledge of the main lines of philosophy, ethics and western culture and history do belong to the presupposed background of the course. Concerning motivation, the students are not expected to be religious, but they are expected to be willing to reflect in an open and critical-scientific manner on fundamental ethical questions, and questions on the meaning of life, from different philosophical points of view, in particular, but not exclusively, the Jewish and Christian point of view.  

      Identical courses

      A08C4A: Religie, zingeving en levensbeschouwing
      A04D5A: Religie, zingeving en levensbeschouwing

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Religions (B-KUL-H0N82a)

      3 ECTS : Lecture 20 Second termSecond term

      Content

      Content Key themes in religion and theology are presented, based on insights of modern social sciences and contemporary philosophical thinking. The following questions are studied: what kind of purposes do religions serve, what is the core of the Christian faith and how can this be situated in the framework of other world religions? Both the relationship between Christianity and culture and Faith and Science is given much attention, as well as some classical themes which have always been the pivoting points of the Christian faith: the contribution of faith to personal happiness, the (Christian) expectations of a future life. Finally, the relevance of religious viewpoints on themes in engineering ethics will be presented.

      Course material

      Study cost: 11-25 euros (The information about the study costs as stated here gives an indication and only represents the costs for purchasing new materials. There might be some electronic or second-hand copies available as well. You can use LIMO to check whether the textbook is available in the library. Any potential printing costs and optional course material are not included in this price.)

      The professor makes course notes available.

      Format: more information

      Interactive college. Apart from the lectures, a guest lecture could be organized.

      Evaluatieactiviteiten

      Evaluation: Religions (B-KUL-H2N82a)

      Type : Exam during the examination period
      Description of evaluation : Written
      Type of questions : Multiple choice
      Learning material : None

      Information about retaking exams

      Contrary to the first examination (multiple choice), re-examination consists of 3 open questions. 

      ECTS Globale uitdagingen voor een duurzame samenleving (B-KUL-H0O00A)

      3 studiepunten Nederlands 24 Tweede semesterTweede semester Uitgesloten voor examencontract

      Doelstellingen

      De hoofddoelstelling van dit vak is dat de studenten de nodige kennis (en vaardigheden) verwerven met betrekking tot de ‘staat van de planeet’. Daarvoor zetten we in op de volgende concrete leerresultaten:

      • Studenten zijn op de hoogte van de stand van zaken m.b.t. de voornaamste problemen waarmee de globale samenleving wordt geconfronteerd. Zij beschikken over de nodige parate kennis (ook kwantitatief) en zijn in staat om nieuwe informatie, op basis van deze kennis, inzichtelijk te interpreteren.
      • Zij kunnen een op feiten en rationale afwegingen gebaseerd standpunt innemen m.b.t. de voornaamste thema’s van de duurzaamheidsproblematiek. Hierbij kunnen zij, waar nodig, ook het cruciale cijfermateriaal correct interpreteren.
      • Studenten zijn zich bewust van het feit dat de wereld voortdurend in evolutie is en hebben de reflex om, wanneer nodig hun kennis bij te werken door het opzoeken en interpreteren van recent, relevant feitenmateriaal.
      • Zij hebben inzicht in de samenhang tussen de verschillende problematieken en zijn in staat om, als ze een standpunt innemen m.b.t. een bepaald thema, de samenhang met andere thema’s te duiden, waar mogelijk vanuit een systeemgebaseerde benadering.
      • Studenten kennen de implicaties van verschillende oplossingsstrategieën voor elk van de behandelde thema’s. Ook hier kunnen ze de samenhang met andere thema’s duiden, waar mogelijk vanuit een systeemgebaseerde benadering.
      • Studenten begrijpen waarom mensen dikwijls verkeerde denkbeelden koesteren (en welke de voornaamste zijn) en weten hier in een debat mee om te gaan.

       

      De vormingsdoelen kunnen als volgt geformuleerd worden:

      • Studenten hebben de reflex ontwikkeld om uitspraken rond de behandelde thema’s kritisch te benaderen en te verifiëren aan de hand van recente informatie en inzichten, ook kwantitatief indien dat nodig is.
      • Studenten zijn in staat om informatie die hen bereikt i.v.m. de besproken thema’s te toetsen aan hun eigen kennis en kunnen de redenen formuleren waarom informatie al dan niet correct is.
      • Studenten hebben ook een ‘systeemreflex’ ontwikkeld: zij gaan, wanneer de behandelde thema’s besproken worden, spontaan op zoek naar de samenhang met andere thema’s en wegen uitspraken of standpunten niet enkel af ten opzichte van de kosten/benefits voor de thematiek in kwestie maar hebben oog voor het grotere geheel.

      Begintermen

      Geen specifieke voorkennis vereist.

      Identieke opleidingsonderdelen

      H04M8A: Interdisciplinair college duurzame ontwikkeling

      Plaats in het onderwijsaanbod

      Onderwijsleeractiviteiten

      Globale uitdagingen voor een duurzame samenleving (B-KUL-H0O00a)

      3 studiepunten : College 24 Tweede semesterTweede semester

      Inhoud

      In deze lessenreeks worden globale duurzaamheidsuitdagingen ontrafeld, waarbij we de uitdagingen bekijken vanuit een globaal perspectief. De volgende thema’s worden behandeld:

      • "planetary boundaries" en klimaat
      • Biodiversiteit en landgebruik
      • Bevolkingsdemografie en globale gezondheid
      • Voedsel en water
      • Energie
      • Grondstoffen en circulaire economie
      • Urbanisatie en mobiliteit
      • Sociale en economische ongelijkheid
      • Migratie en diversiteit
      • Ethische, culturele en psychologische dimensies van globale veranderingen
      • Economie van duurzame ontwikkeling
      • Globale governance

       

      Elke les wordt verzorgd door één of meerdere docenten uit de betrokken discipline.

      Studiemateriaal

      Het studiemateriaal zal bestaan uit de slidesets van de verschillende lesgevers die op een zo uniform mogelijke manier worden vormgegeven. Er wordt ook een Engelstalige versie van de slides gemaakt. Verder ondersteunen we het leerproces via digitale middelen zoals kennisclips zodat ook studenten die het Nederlands niet machtig zijn het vak via zelfstudie kunnen opnemen.

      Toelichting onderwijstaal

      Het OPO zal in het Nederlands gedoceerd worden. Wel zoeken we, op wat langere termijn, naar een oplossing om ook niet-Nederlandstalige studenten het OPO te laten volgen door het aanbieden van Engelstalig digitaal lesmateriaal.

      Toelichting werkvorm

      Het vak bestaat uit 12 lessen van twee uur die elk 1-2 thema’s behandelen. De lessen zullen interactief worden opgevat, o.a. door de studenten bij het begin te bevragen (met behulp van Poll Everywhere) over hun huidige kennis en hierover met hen in gesprek te gaan. Ook tijdens de les zullen regelmatig vragen gesteld worden en zal aan de studenten gevraagd worden om kleine oefeningen te maken.

      Komt ook voor in andere opleidingsonderdelen

      F0BX5A : Globale uitdagingen voor een duurzame samenleving

      Evaluatieactiviteiten

      Evaluatie: Globale uitdagingen voor een duurzame samenleving (B-KUL-H2O00a)

      Type : Examen buiten de normale examenperiode
      Vraagvormen : Meerkeuzevragen
      Leermateriaal : Rekenmachine

      Toelichting

      Het examen is een casusgebaseerd schriftelijk meerkeuzevraag examen met giscorrectie.

      Toelichting bij herkansen

      De tweede examenkans zal dezelfde vorm hebben als de eerste.

      ECTS Computer Architectures and the HW/SW Interface (B-KUL-H0O38A)

      3 ECTS English 28 Not organisedNot organised

      Aims

      This course aims at teaching the fundamentals of computer organization and computer architectures. We especially focus on the interplay and interface between the computer hardware and the (low-level) software. 

      This class is meant as a catch-up class for people without sufficient education on computer architectures in their bachelor curriculum. 

      Previous knowledge

      This class should not be taken by people that already followed KUL-H01P5A.

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Computer Architectures and the HW/SW Interface: Lecture (B-KUL-H0O38a)

      2.41 ECTS : Lecture 18 Not organisedNot organised

      Content

      This class covers: 

      • Instruction set architectures and the RISC-V interface 
      • Basic programming constructs in C and assembler language 
      • Stack/heap/recursion/exceptions 
      • Single cycle Processor micro-architecture 
      • Enhancing Performance with Pipelining 
      • Data path parallelism 
      • Exploiting Memory Hierarchy 

      Course material

      Handouts of slides + reference book: 

      Computer Organization and Design RISC-V Edition: The Hardware Software Interface 

      Authors: David Patterson, John Hennessy 

      Paperback ISBN: 9780128203316 

      eBook ISBN: 9780128245583

      Computer Architectures and the HW/SW Interface: Exercises (B-KUL-H0O39a)

      0.59 ECTS : Practical 10 Not organisedNot organised

      Content

      The content of the class will be practices in a series of exercise session, in a computer class.  

      Course material

      Exercise assignments on Toledo. 

      Evaluatieactiviteiten

      Evaluation: Computer Architectures and the HW/SW Interface (B-KUL-H2O38a)

      Type : Exam during the examination period
      Description of evaluation : Written
      Type of questions : Open questions
      Learning material : Course material

      ECTS Electrical Energy Conversion for Renewable Energy and Storage (B-KUL-H0O42A)

      3 ECTS English 20 Second termSecond term

      Aims

      The student gains an understanding of the power electronics technology essential for the conversion of renewable energy, such as solar and wind power, and energy storage, such as batteries. The student can evaluate such systems and select and design the basic architecture. 

      Previous knowledge

      Knowledge of power electronics, renewable energy sources and electricity grids.

      Order of Enrolment



      ( SIMULTANEOUS(H04A0A ) ) AND
      ( ( SIMULTANEOUS(H04A4A ) OR SIMULTANEOUS(H00P9A ) ) OR
      ( SIMULTANEOUS(H00P8A ) OR SIMULTANEOUS(H04A2A ) ) ) AND
      ( SIMULTANEOUS(H04C1B ) OR SIMULTANEOUS(H00S7A ) ) AND
      ( SIMULTANEOUS(H00P3A ) )


      H04A0AH04A0A : Power Systems
      H04A4AH04A4A : Electrical Drives; Advanced Topics in Electrical Machines, including Implementation Aspects
      H00P9AH00P9A : Elektrische aandrijvingen; aanvullingen elektrische machines, m.i.v. gebruiksaspecten
      H00P8AH00P8A : Vermogenelektronica
      H04A2AH04A2A : Power Electronics
      H04C1BH04C1B : Renewable Energy
      H00S7AH00S7A : Hernieuwbare energie
      H00P3AH00P3A : Smart Distribution Systems

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Electrical Energy Conversion for Renewable Energy and Storage (B-KUL-H0O42A)

      3 ECTS : Lecture 20 Second termSecond term

      Content

      • Conversion of photovoltaic energy 
        • Energy yield calculation 
        • PV battery systems 
        • converters, microgrid architectures: AC vs. DC 
        • Applications: BIPV, agri-PV, floating-PV 
      • Wind energy conversion 
        • Wind farms, including off-shore 
        • Network integration: control, fault behaviour, network services 
      • Energy storage, including batteries 
        • Battery technologies 
        • Battery utilisation 
        • Applications: home batteries, fast charging electric vehicles 

      Course material

      Notes and presentations by teachers + case studies.

      Format: more information

      Company visit

      Lectures by teachers and guest lecturers. Optionally, a visit or lecture can be organised on site. 

      Evaluatieactiviteiten

      Evaluation: Electrical Energy Conversion for Renewable Energy and Storage (B-KUL-H2O42a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Paper/Project, Presentation
      Learning material : Course material

      Explanation

      The students make an individual case study (paper), to present for a jury of min. 2 teachers, in exam period, for instance a design proposal or a review an energy conversion architecture. 

      ECTS Optimization Problems in Energy Systems (B-KUL-H0P08A)

      3 ECTS English 24 First termFirst term Cannot be taken as part of an examination contract

      Aims

      The aim of the course is to introduce a number of different optimization problems as typically encountered in energy systems & markets. The course will provide the mathematical formulation of the different types of problems, their implementation in general purpose programming languages, approximation and relaxation techniques for computational performance. 


      The students will learn:

      • How to apply optimization techniques to real-life problems?
      • How to mathematically formulate optimization problems related to energy systems & markets?
      • How to implement optimization problems in software tools?
      • Which solvers to use for which of type of problems?
      • How to appropriately use relaxations and approximations?
      • How to evaluate/interpret complex integrated energy systems with ample sector coupling (e.g., electricity, gas, heat)
      • How to interpret the outcomes of these problems and link them to regulatory interventions, energy markets & systems?

      Previous knowledge

      The course builds upon basic understanding of power system calculations (power flow calcualtions in particular), modelling of gas and thermal networks and energy markets, but no course is formally required.

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Optimization Problems in Energy Systems: Lecture (B-KUL-H0P08a)

      2 ECTS : Lecture 16 First termFirst term

      Content

      Following topics are covered in the course (indicative list):

      • General insight in importance of optimization within energy systems and market modelling 
      • Overview of complexity classes, programming languages and optimization modelling toolboxes
      • Optimal power, heat and gas flow problems
      • Convex relaxations and approximations
      • Integer type of problems, e.g., transmission expansion, unit commitment
      • Market clearing problems and modelling of policy interventions
      • Introduction to optimization under uncertainty

      Lectures (indicative list):

      • Introduction in optimalisation in energy systems and markets
      • Unit commitment and generation expansion planning I
      • Unit commitment and generation expansion planning II  
      • Optimal power flow en transmission network planning I
      • Optimal power flow en transmission network planning II
      • Optimal heat and gas flow problems
      • Market clearing problems and policy intervention modelling
      • Introduction to optimization under uncertainty

      Course material

      Course slides
      Additional reading references
      Additional references to online resources

      Language of instruction: more information

      English

      Optimization Problems in Energy Systems: Exercises (B-KUL-H0P09a)

      1 ECTS : Assignment 8 First termFirst term

      Content

      The outline of the exercises is as follows (indicative list):

      • Discussion of assignments
      • Introduction to Julia, PowerModels.jl, GasModels.jl
      • How to build your own model?
      • Finishing of assignments and Q&A

      Course material

      Slide material
      Software manuals and online resources 
      References to additional online resources

      Language of instruction: more information

      English

      Format: more information

      Practice session

      Evaluatieactiviteiten

      Evaluation: Optimization Problems in Energy Systems (B-KUL-H2P08a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Oral, Paper/Project, Report
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      Students get an assignment on which they can work during the semester, e.g., 

      • Implementing an existing problem from literature, to which they make modifications/improvements, e.g. adding more details 
      • Replicating results of a paper, identifying pitfalls and extending model/results
      • Students can propose a topic (or paper) or get one assigned.

      The output is a minimal report (indicative length: 4 pages of written text, excluding figures, tables), discussing:

      • The problem statement and mathematical formulation
      • How did I implement the model?
      • Discussion and comparison of results
      • Critical discussion of the model and potential extensions/improvements

      During the examation period, students will be evaluated during an oral exam with discussion of the report (50% of the grade) and additional questions from what has been covered during the course (50% of the grade). 

      ECTS Entrepreneurship in de praktijk / in practice (B-KUL-H0T39A)

      3 studiepunten Nederlands 60 Tweede semesterTweede semester Uitgesloten voor examencontract
      Pontikes Yiannis (coördinator) |  Van Hertem Dirk |  N. |  Pontikes Yiannis (plaatsvervanger) |  Ranga Adrian (plaatsvervanger)

      Doelstellingen

      Het doel van dit project is het opdoen van relevante ervaring rond ondernemerschap. Zo verwerft de student een beter inzicht in de praktische aspecten van het ondernemen.

      Bij het voltooien van dit opleidingsonderdeel:

      • Kan de student ondernemerschap in praktische situaties toepassen.
      • Kan de student ondernemend handelen, door een idee om te zetten in de praktijk.
      • Is de student gegroeid in een aantal vaardigheden, zoals creativiteit tonen, innoveren, risico’s nemen, het plannen en organiseren van taken zodat de deliverables tijdig gerealiseerd worden, …
      • Kan de student over de uitgevoerde taken schriftelijk en mondeling verslag uitbrengen.
      • Kan de student reflecteren over zijn eigen functioneren binnen een project.

      Begintermen

      De student gaat zelfstandig op zoek naar een mogelijk project (bijvoorbeeld AFC, AFD, bij LCIE of deelname aan een ondernemingswedstrijd). Dit kan zowel binnen de non-profit sector als binnen de private sector.

      De student dient een projectaanvraag in. Na goedkeuring kan de student dit opleidingsonderdeel in het ISP opnemen. Voor meer informatie: zie de website https://eng.kuleuven.be/studeren/engineering-essentials/stages/entrepreneurship-in-de-praktijk

      Plaats in het onderwijsaanbod

      Onderwijsleeractiviteiten

      Entrepreneurship in de praktijk / in practice (B-KUL-H0T39a)

      3 studiepunten : Opdracht 60 Tweede semesterTweede semester
      Van Hertem Dirk |  N. |  Pontikes Yiannis (plaatsvervanger) |  Ranga Adrian (plaatsvervanger)

      Inhoud

      De student verwerft ervaring over diverse facetten van ondernemerschap en ontwikkelt managementvaardigheden via participatie aan advies- en implementatieprojecten.

       

      Het project moet verband houden met de opleiding tot ingenieur en voor aanvang inhoudelijk worden goedgekeurd door de coördinator van het OPO.

       

      Voor de praktische regeling gelden de volgende richtlijnen:

      • De student zoekt zelf een project.
      • De student zorgt voor een correcte afhandeling van de nodige documenten, zoals een projectaanvraag, een tussentijdse rapportering, een contract indien nodig, …

      Studiemateriaal

      Geen

      Toelichting werkvorm

      Uitvoeren van creatieve en kwaliteitsvolle projecten voor een start-up, vzw, KMO, NGO, … Deze projecten hebben een duurtijd van één semester tot één jaar en kunnen, afhankelijk van het project, individueel of in teams worden uitgewerkt.

      Evaluatieactiviteiten

      Evaluatie: Entrepreneurship in de praktijk / in practice (B-KUL-H2T39a)

      Type : Permanente evaluatie zonder examen tijdens de examenperiode
      Evaluatievorm : Verslag, Presentatie

      Toelichting

      De evaluatie gebeurt aan de hand van een schriftelijke en mondelinge rapportering in overeenstemming met volgende richtlijnen.

      Het verslag telt 10 tot 15 bladzijden en bestaat uit vier delen:

      • Deel A: situeert het project en bevat de administratieve gegevens: naam student, opleiding van student (inclusief fase en optie), naam project, periode, naam en contactgegevens van eventuele academische begeleider/projectleider (o.a. e-mailadres en telefoonnummer).
      • Deel B: omschrijft het project (de opdracht, het verloop en de behaalde resultaten). De student geeft telkens aan wat zijn taak precies geweest is.
      • Deel C: het reflectiegedeelte over de ervaring van de student. Deze bevat onder andere:
        • Kritische reflectie over de competenties die de student verwachtte te verbeteren (voeg die lijst als bijlage toe aan het verslag).
        • Relatie project en opleiding. Welke inhoud van welke opleidingsonderdelen is aan bod gekomen tijdens het project? Was die inhoud aangepast aan wat er nodig was?
      • Deel D: conclusies die uit het project getrokken werden. Zijn de doelen van het project bereikt? Was het project een meerwaarde voor de student?

      De student dient dit verslag minstens een week voor de presentatie in.

      Opmerking: indien de student herhaaldelijk of op ernstige wijze de verplichtingen vastgelegd in de projectaanvraag niet nakomt, kan de deelname aan het project worden stopgezet en wordt de eindbeoordeling voor het opleidingsonderdeel NA (niet afgelegd).

      Toelichting bij herkansen

      Indien het project als onvoldoende wordt beoordeeld, zal de student de verslaggeving moeten uitbreiden/verbeteren voor een evaluatie in de derde examenperiode. Het project zelf kan niet hernomen worden.

      ECTS Projectbeheer (B-KUL-H0T42A)

      3 studiepunten Nederlands 20 Tweede semesterTweede semester Uitgesloten voor examencontract

      Doelstellingen

      De student kent de technieken en middelen die beschikbaar zijn voor het opstarten, uitvoeren, opvolgen en bijsturen van grote projecten. De student kan situaties en patronen herkennen. De student kan geschikte methodes en technieken identificeren om projecten op een effectieve manier te sturen met optimale kansen om de vooropgestelde projectresultaten te realiseren.

      Begintermen

      De cursus is niet gebonden aan een afstudeerrichting.  De invulling van de opdrachten kan worden aangepast aan de studierichting van de studenten.  Wel is het aangewezen het opleidingsonderdeel in een laat stadium van de technische jaren in te plannen, zodra het ontbreken van technische bagage geen belemmering vormt bij het uitwerken van specifieke cases of opdrachten.  Een eventueel opleidingsonderdeel gericht op Bedrijfskunde wordt best voorafgaand aan deze cursus gevolgd.

      Onderwijsleeractiviteiten

      Projectbeheer (B-KUL-H0T42a)

      3 studiepunten : Opdracht 20 Tweede semesterTweede semester

      Inhoud

      Inleiding

      • Wat is projectbeheer ?
      • Situering binnen de algemene planningsproblematiek
      • Karakteristieken van projecten
      • Projectmanager
      • Componenten, concepten en terminologie
      • Levenscyclus van een project : strategische en tactische beschouwingen
      • Factoren verantwoordelijk voor het succes van een project

      Organisatiestructuren en taakverdeling

      • Organisatiestructuren
      • Personeelsmanagement
      • Concurrent engineering
      • Doorlichting en selectie
      • Opdeling van een project
      • Uitbesteden of zelf doen ?
      • Conflictevaluatie : intern in de organisatie, milieu-effecten, andere

      Projectplanning

      • Inleiding
      • Duur van projectactiviteiten
      • Leefeffect
      • Volgorderelaties
      • Gantt-voorstelling
      • Pijlennetwerk voor kritieke pad-berekeningen (CPM)
      • Blokkennetwerk voor kritieke-pad-berekening (CPM)
      • (lp-formulering)
      • Aggregeren van activiteiten
      • Opvangen van onzekerheid
      • Analyse van PERT en CPM veronderstellingen
      • Conflicten bij het plannen.

      Projectbudget

      • Inleiding
      • Projectbudget en bedrijfsdoelstellingen
      • Opstellen van een budget
      • Budgetbeheer
      • Financiering

      Middelenbeheer

      • Invloed van beperkte middelen op het project
      • Classificatie van middelen
      • Planning van middelen en project met tijd als beperkende factor
      • Planning van middelen en project met middelen als beperkende factor
      • Prioriteitsregels voor het toewijzen van middelen
      • Subcontracting/beoordelen leveranciers
      • Uitvoeren van projecten in parallel

      Projectcontrole

      • Inleiding
      • Controlesystemen
      • Opvolgend en controle van tijdsgewijze planning en kosten
      • Rapporten
      • Updaten van kosten- en planningsparameters
      • Technologische controle

      Computerondersteuning voor projectmanagement

      • Inleiding
      • Gebruik van computers
      • Criteria voor softwareselectie
      • Software-implementatie
      • Datamanagement en kennisbeheer

      Projectbeëindiging

      • Inleiding
      • Wanneer een project beëindigen ?
      • Finale stappen bij het beëindigen van een project
      • Case studies

      Studiemateriaal

      Handboek, presentaties (via Toledo)

      Evaluatieactiviteiten

      Evaluatie: Projectbeheer (B-KUL-H2T42a)

      Type : Examen tijdens de examenperiode
      Evaluatievorm : Mondeling
      Vraagvormen : Open vragen, Gesloten vragen
      Leermateriaal : Geen

      Toelichting

      Opdracht met presentatie en verdediging (mondeling examen).

      ECTS Flexible Electrical Power Systems (B-KUL-H0T47A)

      3 ECTS English 20 Second termSecond term
      Van Hertem Dirk (coordinator) |  Beerten Jef |  Van Hertem Dirk

      Aims

      Analysis of flexibility for electric power systems in the different time domains, with the emphasis on the modeling and the tools.

      • Modeling and control of controllable devices such as HVDC, HVDC grids and FACTS
      • Introduction to real-time digital  simulations and hardware-in-the-loop testing, as well as SCADA tools.

      The introduction of renewables, the opening of the market and the higher  loading of the power system requires a new manner of operating the  power system. This results in new operational procedures and controls to  keep the system reliable and stable. During this course, the student will  specialize himself in the analysis of flexibility for electric power systems in  the different time domains. The course focuses on the modeling and  simulation of modern power systems and their controls. Special attention  is paid to  controllable devices such as HVDC, HVDC grids and FACTS in  the system. The course also provides an introduction to real-time digital  simulations and hardware-in-the-loop testing.  The course focuses on the modeling and tools.

       

       

      Previous knowledge

      Students should have a solid understanding of power system dynamics and operations. The course "Design and Management of Electric Power Ssystems" H04C6A and its prerequisites (or equivalents thereof) are strongly recommended. 

       

       

       

      Order of Enrolment



      SIMULTANEOUS(H04C6A)


      H04C6AH04C6A : Design and Management of Electric Power Systems

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Flexible Electrical Power Systems (B-KUL-H0T47a)

      3 ECTS : Lecture 20 Second termSecond term

      Content

      • Modeling and simulation of flexibility in power systems (0.9 ECTS)
      • Flexible AC Transmission systems (0.3 ECTS)
      • High Voltage Direct Current (0.9 ECTS)
      • Real-time digital simulations (0.6 ECS)
      • Hardware-in-the-loop applications of real-time simulations (0.3 ECTS)
      • Reversed classroom on a specific topic (0.3 ECTS)

      Course material

      Information placed on Toledo

      Evaluatieactiviteiten

      Evaluation: Flexible Electrical Power Systems (B-KUL-H2T47a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written, Paper/Project, Project/Product
      Type of questions : Open questions
      Learning material : Course material

      Explanation

      The exam consists of 4 questions: 3 open questions (oral presentation after written preparation) and one based on the flipped classroom.

       

       

       

       

      Information about retaking exams

      Same as regular exam

       

       

      ECTS Psychologie m.i.v. psychologie van de waarneming (B-KUL-P00H0A)

      3 studiepunten Nederlands 20 Tweede semesterTweede semester
      Wagemans Johan |  Van Geert Eline (plaatsvervanger)

      Doelstellingen

      Dit opleidingsonderdeel wil de student vertrouwd maken met de psychologie als wetenschap door een korte inleiding op haar geschiedenis, domeinen, methoden, mogelijkheden en beperkingen.
      Dit wordt inhoudelijk gestoffeerd door een behandeling van enkele thema's uit de recente cognitieve en experimentele psychologie die voor ingenieurs en ingenieur-architecten interessant kunnen zijn, zoals visuele waarneming, geheugen, aandacht en andere functies. Daarnaast komen ook enkele meer toegepaste onderwerpen aan bod die de concrete relevantie van psychologische invalshoeken binnen architectuur, computerwetenschappen en andere ingenieurswetenschappen aantonen, zoals onder andere toepassingen van inzichten over visuele waarneming binnen computerwetenschappelijke ontwikkelingen (VR, beeldcompressie, enz.) of toepassingen van psychologische principes binnen architectuur en design.


      Via een vrijwillig essay (dat als vervanging ingezet kan worden voor een examenvraag), kunnen studenten ook een onderwerp uitwerken dat op het raakvlak ligt tussen de behandelde inhouden en hun eigen interesse- en expertisedomein.


      Het is uitdrukkelijk niet de bedoeling om een systematische inleiding te geven tot de psychologie als geheel, noch een exhaustief overzicht te bieden van alle topics die voor ingenieurs en ingenieur-architecten van belang zouden kunnen zijn. Dit opleidingsonderdeel is eerder bedoeld als een eerste smaakmaker en een voldoende basis voor verdere zelfstudie op dit gebied.

      Begintermen

      Er wordt geen voorkennis verondersteld. De leerstof wordt op een academisch niveau behandeld waarbij ook voldoende inzet door de studenten verwacht wordt om zich de leerstof op het vereiste niveau eigen te maken.

      Plaats in het onderwijsaanbod

      Onderwijsleeractiviteiten

      Psychologie m.i.v. psychologie van de waarneming (B-KUL-P00H0a)

      3 studiepunten : College 20 Tweede semesterTweede semester
      Wagemans Johan |  Van Geert Eline (plaatsvervanger)

      Inhoud

      De lessenreeks vormt een eerste kennismaking met psychologie als wetenschap. Naast een algemene situering ligt de focus op enkele thema's uit de recente cognitieve en experimentele psychologie die voor ingenieurs en ingenieur-architecten relevant kunnen zijn. Deze thema's houden verband met psychologische functies zoals waarneming, geheugen, aandacht, en hun samenhang. Anderzijds bespreken we ook enkele meer toegepaste thema's die de concrete relevantie van psychologische invalshoeken en psychologisch onderzoek binnen architectuur, computerwetenschappen en andere ingenieurswetenschappen illustreren. De specifieke thema's die worden behandeld kunnen van academiejaar tot academiejaar verschillen.

      Studiemateriaal

      Studiemateriaal (slides en eventueel bijkomende achtergrondliteratuur) wordt ter beschikking gesteld via Toledo.

      Evaluatieactiviteiten

      Evaluatie: Psychologie m.i.v. psychologie van de waarneming (B-KUL-P20H0a)

      Type : Examen tijdens de examenperiode
      Evaluatievorm : Mondeling
      Vraagvormen : Open vragen

      Toelichting

      Het examen verloopt mondeling, met korte schriftelijke voorbereiding. Elke student krijgt 3 vragen, met een variabel gewicht, afhankelijk van de omvang en de moeilijkheidsgraad. Het gaat om grote, open vragen die peilen naar kennis, inzicht en toepassing. Tijdens de mondelinge bespreking zal de docent bijsturen als de student op een verkeerd spoor zit en de student op weg helpen als die totaal hulpeloos is (uiteraard ten koste van de punten). De docent zal ook bijvragen stellen om eventuele lacunes te proberen invullen of onduidelijkheden te proberen ophelderen. Ook bijvragen die peilen naar dieper inzicht of complexere verbanden kunnen aan bod komen (om naar boven toe te kunnen differentiëren).

      De student kan er voor kiezen om 1 examenvraag te vervangen door een zelfgemaakt essay over een zelfgekozen onderwerp (na goedkeuring van de docent). De specifieke modaliteiten worden tijdig op Toledo meegedeeld.

      Toelichting bij herkansen

      Het examen verloopt bij de herkansing op dezelfde manier.

      ECTS Genderstudies (B-KUL-S0B88A)

      4 studiepunten Nederlands 26 Beide semestersBeide semesters
      Draulans Veerle |  Murru Sarah (plaatsvervanger)

      Doelstellingen

      Bij het voltooien van dit opleidingsonderdeel hebben de studenten de volgende leerresultaten bereikt:

      • Studenten kunnen door kennisverwerving van en inzicht in recente onderzoeken en theoretische ontwikkelingen over het thema 'gender en diversiteit' de complexiteit van het studiethema en de daarin aanwezige meervoudige bewegingen en conceptuele betekenisverlening herkennen en benoemen.
      • Studenten kunnen de theoretische accentverschuivingen als analyseconcepten uitleggen en illustreren aan de hand van thematische voorbeelden (vb. controle van lichamelijkheid, symbolische representatie, maatschappelijke participatie of leiderschap).
      • Studenten kunnen (recente) praktijken en beleidsontwikkelingen met betrekking tot de aangeboden cursusthema's duiden vanuit interdisciplinaire, wetenschappelijke referentiekaders.
      • Studenten kunnen op zelfstandige basis teksten over genderidentiteit en representatie analyseren, kritisch-argumentatief beoordelen en de conclusies van hun zelfstandig werk schriftelijk weergeven.
      • Studenten leren kritisch reflecteren over de mogelijke invloed van situationele gegevens op de benadering van een studieobject, c.q. ze herkennen de invloed van eigen denkbeelden/vooronderstellingen/stereotypen met betrekking tot de termen gender en diversiteit bij de studie van inleidende colleges en gastcolleges.

      Deze doelstellingen worden bij de start van de colleges aan de studenten gecommuniceerd.

      Begintermen

      Gezien het grondige, inleidende karakter van de cursus én de interdisciplinaire aanpak wordt van studenten geen specifieke voorkennis op het domein van genderstudies verwacht.

      Plaats in het onderwijsaanbod

      Onderwijsleeractiviteiten

      Genderstudies (B-KUL-S0B88a)

      4 studiepunten : College 26 Beide semestersBeide semesters
      Draulans Veerle |  Murru Sarah (plaatsvervanger)

      Inhoud

      Het opleidingsonderdeel biedt KU Leuven studenten de kans om breder te denken dan hun specifieke discipline en in een interdisciplinaire benadering kennis te maken met het eigene van een genderbenadering. De cursus biedt een grondige inleiding in het domein van de genderstudies. Achtereenvolgens worden epistemologische, methodologische en inhoudelijke kwesties aangesneden: wetenschapsfilosofische vraagstellingen zoals de gesitueerdheid en gender-gebondenheid van kennis; de invloed van opvattingen over mannelijkheid en vrouwelijkheid op de inhoud van de wetenschappen;  de verklaring voor de verwaarlozing van aandacht voor ‘mannenthema’s of vrouwenthema’s’ in vele wetenschapsdomeinen. De notie interdisciplinariteit wordt kritisch toegelicht. Tevens wordt een kort overzicht gegeven van de geschiedenis van genderstudies en van verschuivingen die zich hierbij hebben voorgedaan. Ten slotte worden thema's behandeld zoals socialisatie (de wijze waarop jongens en meisjes tot mannen en vrouwen worden gevormd), man/vrouwbeelden (hoe vrouwelijkheid/mannelijkheid gestalte krijgt in cultuurproducten), V/M-verhoudingen in b.v. geschiedenis, sport, religie of onderwijs.

      Studiemateriaal

      Er wordt gebruik gemaakt van volgend studiemateriaal:

      • Handboek
      • Artikels en literatuur
      • Presentatiesoftware
      • Toledo

      Op het handboek na, dat kan aangekocht worden of uitgeleend in een bibliotheek, wordt alle cursusmateriaal als PDF ter beschikking gesteld via Toledo. 

      Toelichting werkvorm

      Donderdagavond, 18-20u, Leuven, jaarvak - start eind oktober 2023 en loopt door tot eind maart 2024. Meer info over de planning en aula wordt gecommuniceerd via Toledo.

      Dit opleidingsonderdeel wordt ingericht volgens principes van blended learning, waarbij contactonderwijs (face-to-face) en online leren kunnen worden gecombineerd. De concrete invulling wordt gecommuniceerd via Toledo.

      Evaluatieactiviteiten

      Evaluatie: Genderstudies (B-KUL-S2B88a)

      Type : Examen buiten de normale examenperiode
      Evaluatievorm : Schriftelijk
      Vraagvormen : Meerkeuzevragen, Open vragen
      Leermateriaal : Geen

      Toelichting

      Examenkenmerken
      De evaluatie gebeurt op basis van een schriftelijk gesloten boek examen met een combinatie van open vragen (ong. 2/3 van eindtotaal) en multiple choice vragen (ong. 1/3 van het eindtotaal) (giscorrectie wordt toegepast).

      Het examen vindt plaats buiten de normale examenperiode (mogelijk,  maar nog te bevestigen),  tijdens de laatste lesweek in mei 2025. Datum, uur en plaats worden ook gecommuniceerd via Toledo. 

      Voor studenten die omwille van (door de ombudsdienst goedgekeurde) omstandigheden op een ander moment dan het regulier vastgestelde examenmoment examen afleggen, kan een andere examenvorm gelden.

      Bepaling eindresultaat

      Het opleidingsonderdeel wordt beoordeeld door de docent, zoals meegedeeld via Toledo en de examenregeling. Het eindresultaat wordt berekend door de titularis van het vak en uitgedrukt met een geheel getal op 20. 

      Herkansen

      De evaluatiekenmerken en de bepaling van het eindresultaat van de tweede examenkans zijn identiek aan die van de eerste examenkans zoals hierboven beschreven.

      Voor studenten die omwille van (door de ombudsdienst goedgekeurde) omstandigheden op een ander moment dan het regulier vastgestelde examenmoment examen afleggen, kan een andere examenvorm gelden.

      Toelichting bij herkansen

      Zie ‘Toelichting’ onder ‘Evaluatieactiviteiten’ voor bijkomende informatie i.v.m. de tweede examenkans.

      ECTS Lessen voor de 21ste eeuw (B-KUL-W0AE0A)

      4 studiepunten Nederlands 26 Beide semestersBeide semesters
      Pattyn Bart (coördinator) |  Pattyn Bart |  Vermeiren Florian (plaatsvervanger) |  d'Hoine Pieter

      Doelstellingen

      Het interfacultair college ‘Lessen voor de 21ste eeuw’ biedt een staalkaart van actuele onderzoeksthema’s in 13 lessen. Docenten uit verschillende disciplines brengen een relevant thema ter sprake dat hen nauw aan het hart ligt.  Elk jaar komen andere thema's aan bod. Dit initiatief biedt een unieke gelegenheid over de grenzen van de vakdisciplines heen te kijken en de horizon te verbreden. Het komt tegemoet aan de idee van een universiteitsbrede algemene vorming. Specifiek en bijzonder motiverend voor studenten van de KU Leuven is het feit dat deze interfacultaire lessencyclus als keuzeopleidingsonderdeel - met het daarbij horende examen - kan worden opgenomen in het studieprogramma van elke faculteit.

      Deze lessenreeks richt zich verder ook tot alle leden van de universitaire gemeenschap en andere belangstellenden om aldus bij te dragen tot de realisatie van het idee van de Universitas omnium scientiarum.

      Begintermen

      Er is geen specifieke voorkennis vereist.

      Plaats in het onderwijsaanbod

      Onderwijsleeractiviteiten

      Lessen voor de 21ste eeuw (B-KUL-W0AE0a)

      4 studiepunten : College 26 Beide semestersBeide semesters
      Pattyn Bart |  Vermeiren Florian (plaatsvervanger) |  d'Hoine Pieter

      Inhoud

      Programma 2024-2025

      • 28 oktober, Bart De Strooper, Hoop aan de Alzheimer horizon
      • 4 november, Stijn Daniels, Nul verkeersdoden: utopie of realistisch doel?
      • 18 november, Raf Van Rooy, Het succes van het Leuvense Drietalencollege, het MIT van de 16de eeuw? 
      • 25 november, Brecht Van Hooreweder, 3D printen van polymeren, metalen en technische keramieken: hype of revolutie?
      • 2 december, Christian Maes, De fysica van het leven en voor het leven
      • 9 december, Tom Daems, Preventie van foltering en onmenselijke of degraderende behandeling of bestraffing
      • 16 december, Johan Swinnen, Krijgen we kanker ooit de wereld uit?
      • 10 februari, Violet Soen en Wouter Druwé, Stichtingsdocumenten en collegenotities: over wat officieel en in de praktijk werd gedoceerd aan de oude Leuvense universiteit 
      • 17 februari, Nicolas Standaert, Service learning: de samenleving als klaslokaal
      • 24 februari, Rudi Laermans, Van radicaal naar classic: Fase van Anne Teresa De Keersmaeker / Rosas meer dan veertig jaar later (i.s.m. STUK – Danserfgoed)
      • 3 maart, Pieter Dhondt, Een rijks-, katholieke of helemaal geen universiteit in Leuven? Omwentelingen in het universitaire landschap tussen 1815 en 1835
      • 10 maart, Kaat Wils en Christiaan Aart Engberts, American Dreams: contacten tussen Leuvense en Amerikaanse studenten en professoren in de 19de en vroege 20ste eeuw
      • 17 maart, Mark Derez, De splitsing van de Leuvense Universiteit
      • 24 maart, Sarah Vansteenkiste, Krapte op de arbeidsmarkt: prognoses, uitdagingen en de rol van universitaire vorming
      • 31 maart, Koen Debackere, De innovatieve rol van onze universiteit

      Website: www.hiw.kuleuven.be/lessen 

       

      Studiemateriaal

      De teksten van de lessen worden gepubliceerd en zullen bij het einde van de reeks ter beschikking zijn: http://www.hiw.kuleuven.be/ned/lessen/

      Evaluatieactiviteiten

      Evaluatie: Lessen voor de 21ste eeuw (B-KUL-W2AE0a)

      Type : Examen buiten de normale examenperiode
      Evaluatievorm : Schriftelijk
      Vraagvormen : Open vragen
      Leermateriaal : Cursusmateriaal

      Toelichting

      Het examen is een schriftelijk examen, type essayvragen en vindt plaats op maandag 26 mei 2025. Voor de derde examenperiode is een examen gepland op maandag 11 augustus 2025.

      • Lesgevers geven na afloop van hun les examenvragen door aan de coördinatoren van het opleidingsonderdeel.
      • Daaruit wordt telkens één vraag opgenomen in de lijst met voorbeeldvragen die via Toledo aan de studenten wordt doorgegeven.
      • Uit de overige vragen worden voor het examen drie reeksen van drie vragen opgesteld. De studenten worden in drie groepen verdeeld en krijgen op het examen elk één van de drie reeksen vragen.
      • Het examen is open boek. 
      • De studenten krijgen twee uur de tijd om het examen af te leggen.
      • De vragen worden verbeterd door de lesgevers die de desbetreffende vraag hebben ingediend.
      • De uitslagen worden samengebracht door de academisch verantwoordelijke. In geval er zich problemen voordoen (bv. onvoldoendes) contacteert hij de betrokken lesgever.
      • Op basis van de scores op de drie examenvragen stelt de academisch verantwoordelijke het definitieve examenresultaat vast.
      • De academisch verantwoordelijke bezorgt de uitslagen aan de verschillende examencommissies.

      ECTS Studium generale: mens- en wereldbeelden (B-KUL-W0AH4A)

      4 studiepunten Nederlands 26 Tweede semesterTweede semester Uitgesloten voor examencontract
      Van Puyvelde Peter (coördinator) |  Allacker Karen |  Ramon Delphine (plaatsvervanger) |  D'hooge Jan |  Samoy Ilse |  Tampère Chris |  Van Puyvelde Peter |  Vermeiren Florian  |  Minder Meer

      Doelstellingen

      Dit opleidingsonderdeel wil de student een multidisciplinaire algemene vorming bieden om als kritische intellectueel te kunnen functioneren in de samenleving. Als dusdanig draagt het bij tot een van de belangrijke vormingsdoelen die de KU Leuven naar voren schuift in haar Visie op onderwijs en leren.

      Leerresultaten

      - De student heeft inzicht in het statuut van wetenschappelijke kennis en in de variëteit aan wetenschappelijke methoden.
      - De student kent de draagwijdte van het gebruik (en misbruik) van cijfers in wetenschappelijk onderzoek en heeft aandacht voor de meest voorkomende denkfouten, zoals het verschil tussen correlatie en causaliteit.
      - De student kan disciplinaire kennis plaatsen in een interdisciplinair perspectief en in een breed cultuurhistorisch perspectief.
      - De student heeft inzicht in een aantal concrete maatschappelijke vraagstukken en kan ze benaderen vanuit verschillende perspectieven; op basis daarvan kan de student een gefundeerd standpunt innemen, rekening houdend met waarden en maatschappelijke impact.

      Begintermen

      Studenten hebben basiskennis binnen hun eigen discipline.

      Plaats in het onderwijsaanbod

      Onderwijsleeractiviteiten

      Studium generale: mens- en wereldbeelden (B-KUL-W0AH4a)

      4 studiepunten : College 26 Tweede semesterTweede semester

      Inhoud

      Studenten volgen de algemene module (4 sessies) en kiezen uit het aanbod twee interdisciplinaire modules (4 sessies elk). Tijdens een eerste inleidende sessie krijgen de studenten de nodige informatie over de opbouw van het opleidingsonderdeel en de manier waarop het wordt geëvalueerd.

      De algemene module is verplicht voor alle studenten en bevat een aantal belangrijke cultuurhistorische en methodologische inzichten in wetenschappelijke kennis en de diversiteit tussen disciplines, met daarnaast aandacht voor kwesties als statistische denkfouten, wetenschapsfraude, bias en perceptie.

      Vervolgens kiest elke student 2 thematische modules. Elke module wordt verzorgd door een interdisciplinair team van 3-4 lesgevers. Naast uiteenzettingen wordt binnen elke module ook ruimte gemaakt voor onderlinge discussie tussen studenten van verschillende disciplines.

      Voorbeelden van thematische modules die kunnen worden uitgewerkt:

      • Materie, tijd en (ontstaan van) leven
      • Vrijheid en determinisme in menselijk gedrag
      • Taal, communicatie en identiteit
      • Perspectieven op geschiedenis, tijd en ruimte
      • Genetica en biotechnologie
      • Milieu, ruimtegebruik en voedselproductie
      • Biodiversiteit en global change
      • Economische ontwikkeling, armoede en crisis
      • Multiculturalisme, natievorming en global justice
      • Ongelijkheid, emancipatie en diversiteit
      • Uitdagingen in de zorg
      • Het Europese project

       

      Studiemateriaal

      Cursustekst voor de algemene module

      Teksten en Powerpoint presentaties voor de specifieke modules worden ter beschikking gesteld via Toledo

      Toelichting werkvorm

      Interactieve colleges

      Evaluatieactiviteiten

      Evaluatie: Studium generale: mens- en wereldbeelden (B-KUL-W2AH4a)

      Type : Permanente evaluatie zonder examen tijdens de examenperiode
      Evaluatievorm : Paper/Werkstuk, Medewerking tijdens contactmomenten

      Toelichting

      Wat verwachten we van de studenten om te kunnen slagen? 

      (1) De studenten zijn verplicht aanwezig tijdens alle sessies van de algemene module en de twee bijzondere modules die hen worden toegewezen. De studenten verwittigen afwezigheid voor aanvang van de sessie aan de coördinator van Studium Generale en attesteren de reden van afwezigheid met een officieel bewijsstuk (bv. doktersattest van de dag van de sessie).

      (2) De studenten participeren actief aan de vierde sessie van de twee bijzondere modules, die de vorm zal aannemen van een debat, gemodereerd door de coördinator van de bijzondere module. De studenten bereiden ook de hen toegewezen taak voor die het debat zal voeden. Het einddoel van de debatsessie is te komen tot een ‘standpuntnota’ waarin de studenten een paar bezorgdheden / acties blootleggen rond het thema van de bijzondere module die volgens hen door de academische overheid in overweging genomen moeten worden (via onderwijs, onderzoek en/of dienstverlening).  

      Toelichting bij herkansen

       

      ECTS Philosophy of Technology (B-KUL-W0EN7A)

      4 ECTS English 26 First termFirst term Cannot be taken as part of an examination contract

      Aims

      The aim of this course is to make students familiar with the most important themes and questions in the domain of Philosophy of Technology. 

      At the end of the course, students have a critical insight into questions and themes. This means, among other things, that they can clearly distinguish the different positions, and can explain the arguments pro and contra these positions. In addition, students have a good understanding of the links between the concepts that take a central place in the domain of Philosophy of Technology.

      Previous knowledge

      No specific knowledge of Philosophy or Technology is required.

      Is included in these courses of study

      Onderwijsleeractiviteiten

      Philosophy of Technology (B-KUL-W0EN7a)

      4 ECTS : Lecture 26 First termFirst term

      Content

      Among other things, the following questions will be discussed:

      1. Is technology morally neutral?

      2. Can chatbots think?

      3. How should we think about conscious AI?

      4. Is AI an existential problem?

      5. Is technological enhancement a moral problem?

      5. What are the ethical risks of AI?

       

      Course material

      PowerPointpresentations and articles. Both will be available on Toledo.

       

      Format: more information

      The course can be divided into three parts: lectures, a paper, and discussions based upon texts.

      Evaluatieactiviteiten

      Evaluation: Philosophy of Technology (B-KUL-W2EN7a)

      Type : Partial or continuous assessment with (final) exam during the examination period
      Description of evaluation : Written, Paper/Project, Participation during contact hours
      Type of questions : Open questions

      Explanation

      The final grade is based upon a paper (20%), a written exam (70%), and participation in the discussion (10%). 

      Students who do not participate in all parts of the course (exam, paper, discussion) will get a grade ‘NA’ for the course (you don't get a final grade).

      Information about retaking exams

      During the third examination period, students should and can only retake those parts of the evaluation (paper and/or exam) for which they got no score or an insufficient score.

      Participation in the discussion cannot be retaken during the third exam period. Students who did not participate in this part of the evaluation will again get a grade ‘NA’ for the course.

      Students who should retake the course in a next academic year should re-do the entire course, including all parts of the evaluation.